LT -~ FEES I BTG gl At b i) A RA DI A S A P ite S/ i e B |

. TN~ - -
S . O i,

ANALYSIS OF MILITARY
ORGANIZATIONAL EFFECTIVENESS
(AMORE)

ADA137360

PROGRAMMER'S MANUAL
N APRIL 1984

Prepared for: U.S. Army Concepts Analysis Agency
8120 Woodmont Avenue
Bethesda, MD 20014

By: SCIENCE APPLICATIONS, INC.
_ 1710 Goodridge Drive
o McLean, VA 22102

) Contract No: MDA-903-80-C-0409

Y
bR
o

ELECTE

Vo e
- % JAN 3 O 1984
Ry O B
Q?
843 o DISTRIBUTION STATEMENT A
o Approved for public zelease) ¢
= Distribution Unlimited -

. 84 01 80 026

DEPARTMENT OF THE ARMY

WHITE SANDS MISSILE RANGE, NEW MEXICO 88002

ATOR-TSL

SUBJECT: Letter of Transmittal DTIC System

Defense Technical Information Center

3 ATTN: DTIC-DDA-2 (Frank Greer)
X Cameron Station
s Alexandria, Virginia 22314
Request the enclosed document be accepted into the DTIC System with the
distribution statement as shown on the accompanying DD Form 1473. The
§ citation is in the DROLS System under ADF050087.
e ‘FOR THE DIRECTOR:

: 1 Encl . "DOWNEY
- as LTC, AGC

' Chief, Support Services Division

US ARMY TRADOC SYSTEMS ANALYSIS ACTIVITY

PR ank af (n A A AR e o o Rl C it b et e A R '.-‘..'-"T

*

16 JAN B4

FR YR, Y ARt Rb’ g A7 R R B T A - s Y T R A N T A N N T T T T Ealaitas

)

"

; SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

b REPORT DOCUMENTATION PAGE per EAP INSTRUCTIONS _
:{ 1. REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

z‘ \‘:T‘:‘\.\

! @ 4. TITLE (end Subsitle) S. TYPE OF REPORT & PERIOD COVERED
. Analysis of Military Organizational Effectiveness Final Report

:g (AMORE) Programmer's Manual

8. PERFORMING ORG. REPORT NUMBER

P
S ‘ 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
MDA-903-80-C-0409
[3 [5 PERFORMING ORGANIZATION NAME AND ADDRESS T0. PROCRAM ELEMENT. PROJECT, TASK
: Science Applications, Inc.

4 1710 Goodridge Drive

| | Mclean, Yirginia 22101
. 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
% Commander, USACAA April 1981
» 8120 Woodmont Avenue 13. NUMBER OF PAGES
: Bethesda, Maryland 20014 . 157
. [T&. MONITORING AGENCY NAME & ADDRESS(/{ different from Controlling Office) | 15. SECURITY CLASS. (of this report)

3 Unclassified

J 'Tii—tspcisggls_@?ﬁ'lon/ DOWNGRADING

I76. OISTRIBUTION STATEMENT (of this Report)

Distribution Statement A: approved for public releasﬁ?distribution unlimited.

*.) A
b
§ 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)
A
3
,h' 16. SUPPLEMENTARY NOTES
s
A
19. KEY WORDS (Continue on reverse side If y and identify by block ber)
AMORE
Unit capability
;s

20. ABSTRACT (Cantiaue an reverse oide ary snd identify by block number) .

The analysis of military organizational effectiveness (AMORE) methodology‘pro-

vides a means for the analysis of unit response to degr dation and its regovery
of capability over time. The methodology considers both the personnel and

B equipment of the organization. The interaction of these elements to form teams

AL S oA S

et et e, e [N S . . - . - PO -
----- CAR S EUR UL AP AT e R A R T T T :
B ST . e, RERES . DRI . e e T e

o) - - o YO 5

.....
.......
) “

R which contribute to organizational capability is also treated. Following a sim-
% ‘¢~¢}1 ulated degradation of the organization, reorganization is accomplished to:achiev1
g o/ the maximum capability in the minimum time. The capability, as a function,of
Y time followingggg radation, is pr i

- DD 5% U3 =oimow or 1 nov 6313 oRsoLETE tl

; SECUMTY CLASSIFICATION GF THIS PAGE (Wien Data Entered)
K+ \

‘.'.'......-._-\.
AP RN S .
PPN NN

ATy f“v' \v' 0N

Lol

e

o SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

<.

?-_Z'i data is provided for a detailed analysis of the organizations weaknesses as
AS TR well as its strengths. This manual provides details of the software

BTy v utilized. A companion User's Manual (ADA111267) provides the analyst/user a
- NG basic understanding of the methodology, the unit analysis, and development
5 of input for the software. An updated User's Manual (ADA128045) is also
1:;.‘ available.

I

" \

»

¥

aiﬁ

-

i S
i ' Accesni~-m 0% B

£y AREE o I

3 ESEEENRE

! Dpi ‘
—_— ¥ v . . i
1w ui
} n '
A -
\ -
% . -
W,
."3 ‘
o’ {
.. {. i
YA !
s
(:-' .
J ‘2 '-.\d
> vy
IR
L

)

’

2' SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)
b

PREFACE

The purpose of this manual is to provide programming personnel

?§ and analysts with details of the AMQORE model necessary to effect proper
¥ and effective maintenance of the model.
4 The AMORE model is provided to U.S. Army Concepts Analysis

A
e

Agency as a part of contract MDA 903-80-C-0409, "Study of Sustainable
Loss Rates."

This manual provides a general description of the AMORE

‘5 model and its structure in Section 1. A more detailed system descrip-
é tion is provided in Section 2. Section 3 provides a detailed descrip-
L tion with flow charts of each of the subroutines of the model and

i Section 4 provides a discussion of the operating environment for the

3 UNIVAC system. This manual is intended for use with the corrgsponding

User's Manual, furnished under separate cover.

R SN

e P e

-

LN AN A% %) o P - L T U T T I I) . A fe e e e e e e e e e =
LI AN 1 0)) 3 Poe SN IOV RE AN Iyt » L T e S T T AT et e e e
AR R R NI A WY gy S L N o »! ."-' 3x, o A “gnt " 'y LY .\‘::.'.._;‘.'q:'::'::':;f.

P
v Tt g g e
.

Rl iR

- :ﬁ \N\-“ L‘ :"‘-J- ."ul‘

g

4
[
%

‘ v

;

SECTION

TABLE OF CONTENTS

PREFACE

TABLE OF CONTENTS
LIST OF FIGURES
LIST OF TABLES
GENERAL

SYSTEM DESCRIPTION
2.1 General

2.2 Dimensioning
2.3 Common Blocks

COMPONENT DESCRIPTIONS

3.1 INPUTD :

Subroutine CUSTMM (NPDSET)

Subroutine INITL (NPDSET)

Subroutine KILL (MP, NN)

Subroutine MAXT (MP, MF, NUMTRY)
Subroutine TRANS (MP, NUMTRY, MF, IS, ILV)
Subroutine CAPT (MP, MF, NUMTRY)
Subroutine ICAP (JMIN, JMAX, ITEAM, NTASK
MF, MAX, IS)

Subroutine WHEN (MP, RTN)

Subroutine RCAP (MAX, ITEAM, RTN, NTASK,
NT3, TOT, MF, MP)

Subroutine ASN, (MP, MF, NUMTRY)
Subroutine CHOKE (MP, MF, NUMTRY)
Subroutine STAT (TMEAN, TOTCAP, SO, GMEAN, GSD)
Subroutine QUTD (TMEAN, SD, GMEAN, GSD)
Subroutine OUTS

.16 Subroutine PRNT

.17 Subroutine QUTA

.18 Subroutine PRNTS (J, K, L, KOUNT)

.19 Program PARAM

OPERATING ENVIRONMENT
4.1 Hardware
4,2 Support Software

=© U B W

W W W W W W W W W w W WD W W W W W
“« o o o . . .
Pt ek ot et i
G LN -

ii

NNNI'.\)
1
~ — —

(;owwciowwww
]

I NN 1= O =
~ O, N~V —On

W W
]]

W W w
U "

’]
~WOWOWPYOODOOOO~IADN oy un
8@0)!\)&0(»»—'»—‘\101

PEP woOLwLww
[CY N

=¥ eV T a

3
3 !
K TABLE OF CONTENTS (CONT.)
SECTION PAGE
i APPENDIX A
f A MUNKRES' ALGORITHM A-1
A.1 General A-1
A.2 Algorithm Operations A-3
A.3 Alternate Optimal Solutions A-20
5
A

iid

o

FIGURE
2-1

3-1
3-2
3-3
3-4
" 3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19

LIST OF FIGURES

AMORE Functional Flow Chart

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

APPENDIX A

A-1
A-2
A-3
A-4
A-5
A-6
A-7
A-8
A-9
A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17

A-18
A-19
A-20

Tasks (Dema
Munkres'Alg
The Initial
Cost Matrix
Cost Matrix
Cost Matrix
Cost Matrix
Cost Matrix

INPUTD
COSTMM
INITL
KILL
MAXT
TRANS
CAPT
ICAP
WHEN
RCAP
ASN
CHOKE
STAT
QUTD
OuUTS
PRNT
OUTA
PRNTA
PARAM

nds)
orithm
Cost Matrix
Following Step One
Following Step Two
Following Step Three
Following Step Four
Following Step Two A Second Time

Cost Matrix Before Entering Step Five

Cost Matrix
Cost Matrix
Cost Matrix
Cost Matrix
Cost Matrix
Cost Matrix
Cost Matrix
Solution Pa
[teration o
The Final C
Original Co
The Payoff

Following Step Five
Following Step Three
Following Step Four
Following Step Two
Following Step Three
Following Step Five
Following Step Three

yoff Matrix Following the Last
f Step Four

ost and Allocation Matrix

st Matrix

Matrix

iv

PAGE
2-2

3-3

3-11
3-17
3-23
3-26

3-101
3-107

t [N I I R |
—t =t =t b b g e = = O 00 N OY B

>rr> >>>>$?>>>>>>>>>>
N DO = —

— = OO O ~NOOGITO A WMNMN

..............................

LIST OF FIGURES (CONT.)

PAGE ' |
|
Finding a Chain for Reallocation A-22 1
Finding a Chain for Reallocation A-22
Finding a Chain for Reallocation A-23
Finding a Chain for Reallocation A-23
Finding a Chain for Reallocation A-23
The Reallocation Chain Completed A-24
Alternate Solution ‘ A-24
LIST OF TABLES
PAGE
AMORE Model Hierarchy 1-2

i K—a SECTION 1

GENERAL

Program AMORE is written in ANSI FORTRAN and consists of
-eighteen subprograms and a MAIN routine. The subroutines may be cate-
gorized as two input routines, one file handling routine, ten
functional routines, and five output routines. The MAIN routine per-
forms no function other than the control of the subroutine operations.
The model is constructed in three levels of hierarchy: Level 9, MAIN;
Level 1, those subroutines called by MAIN; and Level 2, those subrou-
tines called by a Level 1 subroutine. Table 1-1 provides a display of
the model hierarchy along with a brief description of each subroutine
function.

The general functioning of the model may be described as
follows:

_ A stochastic assessment of the degradation of assets (per-
- sonnel and materiel), based on input probabilities of degradation is
made.

The surviving assets are then assigned, by use of a trans-
portation algorithm, to satisfy the demands of a particular require-
ment (team). The largest requirement which can be satisfied is found
using a binary search technique. The search results in.selection of
a particular set of requirements for the application of the transpor-
tation algorithm. The cost used- by the transportation algorithm is

‘ defined as the time required for a particular asset to become oper-

i ationally effective in some task (the demand). Assignments are made
in a manner which will provide a solution with minimum total time cost.
Alternate optimal solutions may | ¢ examined if desired.

1-1

................ S, T L S LA R I T B R T ST S 'L T) St
- .-. -:.q.' ' s ~ o .~s.-"‘h -n » ! ..'~~ [Y
) 8 L 5 by)

M LTSN

-
»

Calw R

PP G

T e A

s

R S s o

o

B T

AT

P
S LY

« Wl B Rk

TABLE 1-1 AMORE Model Hierarchy

LEVEL O AMORE MAIN
LEVEL 1 LEVEL 2

INPUTD

(Loop each PD set)
COSTMM

INITL

(Loop on Iterations)
(Loop on Personnel/Materiel)

KILL

(Loop on Missions)

MAXT
TRANS
CAPT
ICAP
HHEM
RCAP
(OPTIONAL)
ASN

Control of all Processing

Read & store input data, except PD's

Read PD's and decision times, set
up cost arrays. If all PD's read -
STOP.

Initialize storage files for each
new PD set

Stochastic damage application -
establish survivor arrays

Establish maximum number of teams
that can be constructed (NUMTRY).

If dummy resources or invalid trans-
fers are required by TRANS decrease
MUMTRY, otherwise increase

Allocate resources to fill the demands
of team # - NUMTRY

Determine teams available at times of
interest

Determine initial capability teams
avajlable from survivors with no trans-
fers.

" Determine when transfered and/or

repaired assets will be available

Determine the number of teams which can
be formed at each time from available
assets

Store assignment data for teams built,
accumulate -data for iterations that
result in the same number of teams built

PO

1.2

VSR L WA Y S X VAL T S
s T TR ET S 47" -Q‘ I‘ .

S~

R

® - : '

dgg (ffﬁg‘ TABLE 1-1 AMORE Model Hierarchy (Cont'd)

?je"’ L

@s‘ LEVEL 1 LEVEL 2

%3 (OPTIONAL) Store and accumulate choke data from
Y CHOKE each iteration by team, get data from
& - TRANS allocations for N + 1 teams

§$ TRANS Allocate resources, using dummy supply
XS and/or invalid transfers, to construct
%é N + 1 teams

a4

%

(OPTIONAL)
Entry ALTOPT Search for other optimal allocations -
start from choke point (dummy resource

§§ or invalid transfer) only
X (End Missions Loop)
2] (End Personnel/Materiel Loop)

STAT Accumulate iteration capability sta-.
tistics for personnel, materiel, and
unit by time and mission

(End Iteration Loop)

ouTD Calculate average capability and con-
fidence interval for personnel, materiel,
and unit; by time and mission;calculate
integral of unit capability over time

(OPTIONAL) Read stored choke data and control for
ouTsS PRNT
PRNT Calculate average needs and surpluses,

and their standard deviations for each
choke team, Print choke output

, : (OPTIOMAL) Read stored assignment data and control
5 OUTA for PRNTA
s PRNTA Calculate average assignments for each
M : team built and print assignment matrix.
I (End PD Loop)
b T
3}

)

“ffv
&

1-3

aifa) Co W » e . L") Y’ "t
Wi 3R, SR ARCEL S LRLE N 1o MG TR y - TNl AT
R * M RO, , N AN L N o NS Maes

e S L R L S .,
- T oa T 5 e - -
AL A A P L P Y

..
e .

RN

E} RV

After the maximum requirement which can be met is established,
each incremental requirement (team) up to that maximum, is examined to
determine when the- allocated assets will be available, and, consequently,

when each team will be complete. This is done using a random number
drawn from an exponential distribution. This process establishes

the time that each individual or item is available in its allocated
position. This then determines the time when each team is completed.

The next step is to apply the transportation algorithm
using the next higher set of requirements (the next team). This serves
to identify those assets that are required by, or critical to, the
satisfaction of the next higher requirement. Assets which are sur-
plus to that requirement are also identified.

Because of the stochastic processes of the model it is
necessary to replicate the above steps several times to derive expec-
ted values. Each replication of the damage application may process
several sets (missions) of requirements (teams). Processing is also
completed for two different types of assets (personnel and materiel).
The basic difference in the processing of these assets is that sur-
vivors in the materiel category are divided into two additional return
categories representing light and moderate (or crew and unit) repair.
The fraction of total teams completed at the times of interest is
stored for each replication. Additionally, the minimum of the per-
sonnel and materiel values at each time, representing the maximum
unit capability, is stored. These values are averaged over all itera-
tions and ninety percent confidence intervals are calculated for
output after completion of all iterations.

The assignment matrix, allocations made by the transpor-
tation algorithm, and choke data, needs and surpluses for the next

- e e £ Al o A I S ol 2o A Ao o e e ot Bt DR A A IR AL R i S AR AR CR A
iy -

f “

¥ higher team, are stored according to the team and mission number.

These values are averaged over the number of iterations of occurrence
¥, and output when all replications are completed.

-

& o AP

4
3

vt .;M»Jv .

s
w
g
4

¥l e

PR RN

7,
P

1&" s

“~ e e
™y A

PO I AT IR e T I PRI T I I R I 2 o T et m T .. taTe . X .
S L A A N G (A R S s e N L e Ny

: ~‘ e MBS EG L d, T .., e WP, WP, 4. ol - - - o O I e e T B T Sl RPN N Y .- 'n R R OO
5
e
<
Y |
Wl SECTION ¢
X ".'4; “1_7;._:,::'.\'
LS L.
) SYSTEM DESCRIPTION
3
()
Ve 2.1 '‘GENERAL
A Figure 2-1 is a flowchart of the AMORE model in terms of
S the major functions performed. Each of the functions is keyed to
%% the subroutine(s) which perform that function. This figure is also
o basically a flowchart of the MAIN routine. Details of each sub-
N routine are provided in Section 3.
;3
b2 2.2 DIMENSIONING:

The required dimensioning of all arrays is determined by
six of the input variables: NTIMES, the number of times at which
capahility is to be computed; NTASKS(1) and NTASKS(2), the number

| ‘ - of personnel and materiel task entries; the sum of all elements in
fute the array of initial quantities REG(J,I), where I = 1 for personnel,
I = 2 for materiel, and J = a1l task numbers; MMISON, the number of
missions; and NTEAMS, the number of teams of the unit. These vari-
i ables are used to compute a total of 19 parameters required for
éﬁ dimensioning within AMORE. Those parameters are defined below with
Eﬁ their uses in dimensioning.
Y
- 2.2.1 N11MES
= The maximum number of times, the input NTIMES must be
;ﬂ less than or equal to this value.
%
Ay Usage: TIMES(NIIMES)
' TIMEST(N11MES)
b
g
aﬂ 2.2.2 N11KS1
%;2 The maximum number of personnel task lines, the input
_" NTASK(1) must be less than or equal to this value.
W W
e? L) Usage: PERDLY(N11KS1)
: ‘iﬁgps PERPD(N11KS1)
P TRANP(NI11KS1,M11KS1)

COSTP{!I11KS1,N11KS1)

N
2 ITEAMP(N11AMS ,N11SON,N11KS1)

7]
* o
TR READ IN

SNy

BASELINE

- e | O
i
IS
: (OR_HEXT) 0 seT ®
¥ & DELAY TIMES

N0 SonE N YES

SET UP MASS
STORAGE

ot P 3L 7S

i Sl A

e}

S o g S BT e g R

S

AR

LY
i
L
L)

o

© K

PRINT
cpsiLITy (D

\ '\" "'."\,\' MRS TS %

OVER TIME

IF SCHOKE >0

PRINT NEEDS ®

& SURPLUS

IF ASSIGN >0

PRINT ASSIGN- @

MENT MATRIX
key
A INPUTD D
&> cosmm J
C It &
O KILL »
(> MAXT,TRANS

_ <P> CAPT,ICAP UMEN,RCAP

&> AsN

> CHOKE, TRANS ,ALTOPT

Figure 2-1 AMORE - Functional Flowchart

LOOP ON
PERSONNEL
THEN MATERIE

STAT

ouTD

QUTS ,PRNT
QUTA,PRNTA

NO

CALCULATE

AL M= i AP A i~ oI oAl SN o ol e -r
- . St . .

STATISTICS @

THIS ITERATION

ASSESS
DAMAGE

MISSIONS

OETERMINE
MAXIMUM NO.
OF TEAMS

OETERMINE
CAPABILITY
OVER TIME

[F ASSIGN >0
CALCULATE
ASSIGNMENT
MATRIX

[F SCHOKE >0
CALCULATE NEEDS
AND SURPLUS

I
s t a

.....
...............

LR St e e,
A ' a 'a®ar_ &t

MACRAIN e 3

R =
«

)

_4< ,
[P eV

St

-
-t

L J"f‘i’m

PR R . Y
e e e o .

N

s

W

RGAE e o

T e
fay PP &

)

gt el 5

#
4

2.2.3 N11KS2

The maximum number of materiel lines, the input NTASKS(2)
must be less than or equal to this value.

Usage: MATDLY(N11KS2)
MATPD(N11KS2,3)
REPTIM(N11KS2,2)
TRANM(N11KS2,N11KS2)
COSTM(N11K9,N11KS2)
ITEAMM(N11AMS,NTISON,N11KS2)

2.2.4 N11NDS

The maximum number total of all personnel and materiel items.

{The program PARAM adds 100 to allow some chanae to authorizations
without recompiling the model).
Usage: RAND(MN11NDS)

2.2.5 N11SON

The maximum number of missions, the input NMISON must be

less than or equal to this value.

Usage: TMEAN(N11K1,N11SON,3)
SD(N11K1,N1150N,3)
TOTCAP(N11K1,NI1SON,2)
TOT(M11K1,N11SON,2)
ITEAMP(N11AMS NT1SON,N11KS1)
ITEAMM(N11AMS ,N11SON,N11KS2)
ITEAM(N11AMS ,NTISON,N115K1)

2.2.6 N11AMS

The maximum number of teams, the input NTEAMS must be

Tess than or equal to this value,

Usage: ITEAMP(N11AMS,N11SON,N11KS1)
ITEAMM(N11AMS ,N11SON,N11KS2)
ITEAM(N11AMS ,N11SON,N11SK1)

2-3

amhienieasisbecbieb b Sk Sde b B e S N A L L T L M WA b A A A A S A AL N ML S S N N A RO A I A R R A A IRl "I R

;

5

B (G 2.2.7 N11SK1 T

R NN e

§ The larger of N11KS1 or N11KS2.

" Usage: AVEN(N11SK1)

v ANEED(N115K1)

N MINN(N11SK1)
MAXM(N115K1)

N REG(N11SK1,2)

5 RETURM(N11K4 ,N115K1)

) ‘ RTN(N11k4 ,N113KT)

X TASK(N11SK1,3,2)

ITEAM{NITAMS ,N11SON,N115K1)

%; 2.2.8 N11SK3
#3 Q‘

X The larger of N11KS1 or (3 x N11KS2).
Usage: ASURP(N11SK3)

% AVES (N11SK3)
0 IS(N11SK3)
4 ISOURC(N11SK3)
hé MAXS (N11SK3)

,@ MINS (N11SK3)
3 2.2.9 NIKI
e
B N11MES plus 3, the maximum number of times of interest
i} plus zero time, minimum capability time, and infinite time.
Usage: GMEAN(N11K1,N11K2)
o GSD(N11K1,N11K2)
<! TOTCAP(NL1K1,N11SON,2)

TOT(N11KT,NI1SON,2)
TMEAN{NITK1,N11SON,3)
% SD(N11K1,N11SON,3)
R 2.2.10 NLIK2
% N11SON minus 1, one less than the maximum number of
g missions. If (N11SON-1) equal zero,N11K2 is set at 1.
Usage: GMEAN(N11K1,N11K2) -
b e GSO(N11K1,N1IK2)
LR

X AR

2-4

{
-{;
< 2.2.11 N11Kk4
%é M11MES plus 2, all times for capability calculation except
;i zero time.
23 Usage: RETURN(N11K4,N11SK1)
. RTN(N11K4,N115K1)
4 |
EA 2.2.12 N11K9
¥,

N11KS2 times 3, count of maximum number of materiel lines
P plus light and moderate damage categories.
Usage: COSTM(N11K9,N11KS2)

< i i

2.2.13 N11K10

N11SK1 plus 1, one more than the larger number of tasks,
adds space for dummy demand.

Usage: IALLO(N11K11,N11K10)
MALLO(N11K11,N11K10)

,Wd:}:;m# 2

:f"lggb

P(N11K11,N11K10)
Z(M11K11,N11K10)
JC(N11K10)
JD(N11K10)

' WRK(N11K10)

g

¥

‘ﬁ 2.2.14 N11K11

-; N11SK3 plus 1, one more than the larger of personnel

?ﬁ tasks or materiel lines times 3, adds space for dummy supply.

% Usage: TALLO(N11K11,N11K10)

: ALLO(NTIKIT,N11K10)

b MALLO(N11K11,N11K10)

5 P(N11KTT,NTTK10)

7 Z(NTIKIT,N11K10)

% IRTNTIKI1)

. JR(N11K11)

w PS(N11K11,3)

Y

bR

b3 2-5

i

A

‘Q.‘vt, -

B N N BT A AN L W] . e T T TN e e e e e e
7 o . N ‘ S e ce® o®n”®, L e .'-'\ LN

Ll
Ty

T

' Wd'u‘.—,’

AL

b, L -yip‘ﬂ;‘ﬁl“‘
¥ ~

e > ‘ﬁl}*:*
Pl

oY

2.2.15 N11K13

(= MRL21)-~ N11SK3 times 8, plus 2.
Usage: WORK1(N11K13)

2.2.16 N11K14

N11K10 times N11K11l. Used for dimensioning a work storage
area of sufficient size for all elements of the allocation arrays.

Usage: WORK(N11K14)

2.2.17 NIDX

N1IAMS plus 1, times 2, times N11SON, plus 1. The maximum
number of records needed in DEFINE FILE 21 or 22; Choke data for
each numbered team and after all teams for both personnel and materiel
for all misstons.

2.2.18 MRL21

(= N11K13)-— N11SK3 times 8, plus 2. The maximum record
length for any record of DEFINE FILE 21; for each task plus light
and moderate damaged materiel eight data elements may be stored plus
the number of iterations (element 1) and total solutions (element 2)
considering alternate solutions. _ .

2.2.19 MRL22

The larger of [N11KS1 x (N11KS1 + 1)] or [N11SK3 x (N11KS2 + 1)]
plus 2. The maximum record length for any record of DEFINE FILE 22: all
data elements of the largest possible assignment matrix including the
surplus column plus the number of iterations (element 1). Element 2
duplicates element 1.

2-6

..............

-

These 19 dimensioning variables must be available to the AMORE
routine in the form of a FORTRAN PROC element GPARAM. GPARAM is
INCLUDE'd in every component of the AMORE model.

Program PARAM (para. 3.19) provides the capability to read
any data file and calculate the parameters necessary to dimension the
AMORE model. PARAM creates the PROC file GPARAM which AMORE accesses by
an INCLUDE statement in each routine of the model.

2.3 COMMON BLOCKS
The following common blocks are used in the AMORE model.
2.3.1 OLY1

This common block contains the transfer matrices for both
personnel and materiel, the array of repair times for materiel, and
the input flag for use of mean or exponentially distributed return times.
The variables are: TRANP(N11KS1,N11KS1), TRANM(N11KS2, N11KS2), REPTIM
(N11KS2,2), and IMEANT. It is used in the folowing subroutines: INPUTD,
COSTIM, WHEN, and PRNT. |

2.3.2 DLY2

The arrays of personnel and materiel delay times are inclu-
ded in this common block. The variables are: (PERDLY(N11KS1) and
MATDLY(N11KS2). The arrays are established by subroutine COSTMM and
used by subroutine WHEN.

2.3.3 0

-

Y3

This common block contains the cost (total operational delay
for transfer) matrices for personnel, COSTP(N11KS1, N11KS1), and mater-
iel, COSTM(N11K9,N11KS2), and the variable NOTEN which is the number
of dummy resources required by the transportation algorithm. OLY3 is
used by subroutines COSTMM, MAXT, TRANS, CHOKE, and WHEN.

s

] P B

e e

Ay o e 4

-

T A e A S A e

" XN

SEN
.“ﬁlg

L)

PAS

e AR T e) O SCRS - i R RO A ST I s ST TR R o i it i g S faredurai=di AT

2.3.4 GENERL

Common block GENERL contains the number of personnel and
materiel tasks, NTASKS(1) and (2); the number of teams, NTEAMS: the
array of times of interest, TIMES(N1IMES); the number of times,
NTIMES: and the number of missions, NMISON. This common block is
included in the MAIN routine and all subroutines except ICAP.

2.3.5 np

The array of task names, TASK(N11SK1,3,2), and the array
of initial authorized quantities for each task , REG(N11SK1,2), are
contained in this common block. The flag, I[ONLY, for input pro-
cessing only is also included. This common block is used by INPUTD,
COSTMM, and KILL.

2.3.6 KTR1

Common block KTR1 contains the variables MBIG and MSURP.
These variables represent large numbers (ca]culatéd by subroutine
COSTMM) that are used as costs for non-valid transfers (MBIG) and
costs for assignments of surplus or dummy resources (MSURP). The
common block KTRl is included in subroutines COSTMM, MAXT, TRANS,
and CHOKE.

2.3.7 KTR2 -

Common block KTR2 contains the input option flags SCHOKE,
ASSIGN, ITRATE, and MULTF. Additionally, the variables ALTAPE, LAST,
and IMAX are included. ALTAPE designates the unit number of a
scratch file used by INPUTD and TRANS. LAST is the count of alternate
solutions found by TRANS(Entry ALTOPT). IMAX is established by a
DATA statement in INPUTD and is used by TRANS to insure that no

..........
.......

y

2]

1}? (?¢?b\ dimension overflow occurs with some small working arrays. The

f§~- N X3 common block KTR2 occurs in the MAIN routine and in subroutines

:g INPUTD, INITL, TRANS, MAXT, CHOKE, OUTD, OUTS, and PRNT.

3 2.3.8 P01

i

3} Common block PD1 contains the arrays of damage probabilities

5 for both personnel, PERPD(N11KS1), and materiel, MATPD(N11KS2,3).

G This common block occurs in subroutines COSTMM and KILL. The arrays
are established by COSTMM and used by subroutine KILL.

g 2.3.9 PD2

P —_—
e

Common block PD2 contains the arrays of team requirements
for personnel, ITEAMP(N11AMS,N11SON,N11KS1), and materiel,
ITEAMM(N11AMS,N11SON,N11KS2). The arrays are established by INPUTD.
The common block occurs in INPUTD, TRANS, gnd CAPT. Additionally,
the two arrays are passed as calling arguments from CAPT to both
ICAP and RCAP.

2.3.10 PRNTIT

The variables contained in common block PRMTIT are IN,
IOUT, IPGCT, LCONT, AND TITLE(20). IN is a variable unit designator
for the file from which the input is read. IOUT is the unit designator
for the file to which print output is written. IPGCT is the page
Y count and LCONT is the line counter for the print output. TITLE(20)
is the 80 character title associated with each input damage set. The
common block PRNTIT occurs in the MAIN routine and in subroutines
INPUTD, COSTMM, INITL, TRANS, OUTD, OUTS, PRNT, OUTA, and PRNTA.

égégé
?

2~9

R L \ L} LA CAPRRIL R S . - .- . .o -
COM IR ET R O OO N A A RIS G, A A A R o NI R LR
Bo et ralfa¥e*y 'y Op 0 0 8 4 Fr - % S L { . . o

R R R N N T L B e T T T e W O Y T L N N M T (Y " Y S TR R YR AR T LN AT

(Y 2.3.11 SEED
3 [§
¥ Common block SEED contains the seed , ISEED, for the random
3 number generator. ISEED is initialized in MAIN. The common block
ik is necessary for the use of the random number generator BARN and is

used in the MAIN routine and subroutines KILL and VWHEN.

2.3.12 STATG

“ PP A

Common block STATG contains the arrays TOTCAP(N11K1,N11SON,2)
and RETURN(N11K4,N11SK1). TOTCAP contains the calculated capability
each iteration for all times and all missions for personnel and
materiel. RETURN is an array for each time of interest, except zero
time, of the number of individuals or materiel items available for
performance in each task. The common block is used in MAIN and CAPT.

Dt 4 A I e

M A G

8

2.3.13 STATR

Common block STATR contains the arrays where capability
data is accumulated over all iterations. These arrays are: TMEAM(NI11K1,
N11SON,3), SD(M11K1,N11SON,3), GMEAM(N11K1,N11K2), and GSD(N11K1,N11Kk2).
The common block occurs in MAIN and INITL. The arrays are initialized
to zero in INITL prior to beginning any computations for any damage
set. The arrays are passed as calling arguments from MAIMN to STAT
where accumulation occurs over the iterations. They are also passed
from MAIN to OUTD, after the completion of all iterations, where average
values are computed for TMEAN and GMEAN and confidence intervals are
calculated using SO and GSD.

3
)
b
b
3

<L el e

2.3.14 SURV

Common block SURV contains the array of quantities of
each task (personnel or materiel) which survive the damage applica-
tion, array ISOURC(N11SK3). The array is established in subroutine

Rl LIl LR

o 0 o e b
B
»

2-10

- a9 -

N Y PP IS] . % N POl VA UL I I T I e W ™ om e L N
2 MW OENLWD ,i e l-(d‘ SR P S T S R
~ £ 1 - -

R A g NN

Al
~

v o AW
~ A

e

- b S T

08Tl L AP

&

T i Y s s oY

e

KILL. The common block occurs in MAIN and subroutines KILL, MAXT,
CAPT, and CHOKE. The array is passed from MAXT and CHOKE to TRANS
and from CAPT to ICAP as an argument for use by those subroutines.

2.3.15 WKL

Common block WK1 contains the allocation array, IALLO(N11K11,
N11K10), which results from the solution of the transportation problem
in subroutine TRANS. This common block is included in the MAIN routine
and in subroutines TRANS, MAXT, ASMN, CHOKE, and IMHEN.

2.3.16 WK2

- Common block WK2 contains the array WORK(N11K14) which is
used by several routines as working storage for a variety of data.
The common block occurs in subroutines INITL, TRANS, ASN, CHOKE, QUTS,
PRNT, OUTA, and PRNTA.

2-11

...

| T A

a3 ATA A2

(o SECTION 3
COMPONENT DESCRIPTIONS

This section provides flowcharts and general descriptions of
the component subroutines of AMORE as follows:

BEstel st rea e

¥

¥ 1. Subroutine INPUTD

s 2. Subroutine COSTMM

A 3. Subroutine INITL
4. Subroutine KILL
5. Subroutine MAXT
6. Subroutine TRANS
7. Subroutine CAPT
8. Subroutine ICAP
9. Subroutine WHEN

10. Subroutine RCAP

F 11. Subroutine ASN

¢ 12. Subroutine CHOKE -

§ 13. Subroutine STAT

} 14. Subroutine QUTD

: 15. Subroutine QUTS

16. Subroutine PRNT

o 17. Subroutine OUTA

A 18. Subroutine PRNTA

i 19. Program PARAM

A 3.1 INPUTD

3.1.1 General

Te T i e

: Subroutine INPUTD (Figure 3-1) reads the input data from a

file designated unit 5, the standard input unit designator in the

UNIVAC system. The data undergoes a limited amount of processing and data
storage arrays are constructed. Data is formatted for readability and
written to Unit 6, the UNIVAC standard print output unit. A scratch

b file, designated Unit 10, and further referred to as ALTAPE, is also

: required for use by this subroutine.

el R

i
i
4
Ay

3-1

‘Lt [N .t L e
cate . e te e C et .
P “ S %) O AR YRV S 4 - DRI a7 -“' MR

Dimensions are checked as data is read to assure array over-
flows do not occur. The dimensions are established by PARAMETER state-
ments in GPARAM. GPARAM is a PROC file which is constructed by the
program PARAM and made available to the program by INCLUDE statements.
(See paragraph 2.2.)

Processing is straightforward with the exception of the trans-
fer matrices and team requirements. Input definitions and formats are
discussed in detail in the associated User's Manual.

Compiexity of processing the transfer matrices is caused by
an attempt to simplify the work of user analysts. The first simpli-
fication for the analysts was to provide a default of blank to -1. In
most cases, this eliminates a large amount of input typing. This was
then extended to provide an output of the transfer matrix also void of
-1 and with a period (.) substituted for ease of readability. These
goals were accomplished by reading the original input using an alpha
format. The period is then substituted for both blank and -1 fields
and the matrix is printed. The period is then converted to -1 and
" the matrix is written, as alpha-numeric characters, to file ALTAPE.
This file is then read using integer format to obtain a transfer matrix
usable by the model.

An effort was also made to reduce the volume of input re-
quired to state the team requirements. The technique uses a task multi-
plier for each requiremént input. The multiplier causes the require-
ment to be repeated for that number of task lines. Each requirement
for each task is input as the additional number required for that team.
These requirements are converted to cumulative requirements by team
for use within the model.

~

; ® A a B ve? ua Vs 'aTe"a® ey, 2V e T T T T et e e e e A e s e e e T e e T T A T e T AT AT AT T et e T e T T T T,
Loy INPUTD
A START
X _
(o /.‘(‘\ "
: hat *
DATA
X ITIMED = N1IMES
R! ITASKD = N11KS1
o ITASKM = N11KS2
: ITOTD = N1INDS
?1 NTEAMM = N11AMS
& NMISON = N11SON
2 IMAX = 50
LNCNT = 50
!
2
2 Print page heading and increment
page count (IPGCT)
: =
E =< Read Option F‘Iagé - .
’ ,ﬁ ITRATE, SCHOKE, ASSIGN,
N . MULTF, IMEANT, & IONLY
h
H
T
* Print Option Flags -
. Format determined by IONLY
¥,
b
X [f ITRATE less than 2, Print Error Msg.
- If IONLY = 1 continue, otherwise STOP
;
} If any Flag is negative, Print Error Message
B If IONLY equal 1 continue, otherwise STOP
n Read number of times, NTIMES -
. I[f larger than ITIMED print error message
~ and STOP
r_'x:c_\.. §
;-._.‘g;{

4
[t

4 Figure 3-1. Subroutine INPUTD

...... N X

INPUTD

I RAAARAS FLasE

DN Read all times of interest
(TIMES(J), J=1, NTIMES)

i

3

55 Print all times of interest

by lﬁ

3 Check times for ascending order.

} {f out of order print error message,

; if IONLY = 1 continue, otherwise STOP.

! |

N Print page heading, increment page

E and line count (IPGCT & LCONT)

r:

* Read number of personnel tasks, NTASKS(1l) -

e If larger than ITASKD print error message & STOP

§ o Read each task name (TASK(J,NT,1))

}@ ?nd ?utf;c;;'ized quantity TeE 4%
REG(J, J=Task No. - : -

3 Accumulate total authorized, ISUM £ QO vALENT

X

: | 1

o | Print task name & authorized quantity
g Read number of materiel tasks, NTASKS(2) -
If larger than ITASKM print error message & STOP

)

§ Read each task name (TASK(J,NT,2)), authorized quantity (REG(J,2)),
;

and repair times (REPTIM(J,I)) J = Task No. and I = 1 for light or
2 for moderate repairs - accumulate total authorized, ISUM

A

Print task name, authorized

2 quantity, and repair times
¥

R

IR CY

%

S

Figure 3-1. Subroutine INPUTD (Continted)

3

3-4

.
- n . - et e ey e e

ORI ORIy o i N L A RSt R LS R TR mat s LT e el -
12 '." D, '.‘Q & ‘- -.,\} \ .'v A S‘Q'q.(' '’ "‘ - ‘\ o :}-.1-.‘_- - N RN PO = .‘.-_.

A}

Sat At e Y N e -) Captioai it g o

INPUTD

If the total of all authorized personnel
& materiel, ISUM, is larger than ITOTD
print error message & STOP o

3

Check 1ine count, increment page
and print page heading if required

_*

Read transfer times for each personnel task as

alpha characters (2X,A3) - convert blank or -1 fields
to period (.) and print alpha characters for each
task the first 40 transfers or all if less than 40

I

If more than 40 tasks - for each task examine trqnsfers
to next 40 and convert blank or -1 fields to period (.)
and print this section of transfer matrix as alpha .

characters - Repeat this process until complete matrix

is printed

¥

Write transfer times for each task in
alpha format to file ALTAPE - Rewind
ALTAPE and read each task transfer
-times integer format to array TRANP

]

Repeat steps of the preceeding three blocks for
materiel transfer matrix - End with integer
values in array TRANM

Read number of teams, NTEAMS
and number of mission, NMISON

v

If NTEAMS greater than NTEAMM
print error message and STOP

S

If NMISON greater than NMISOM
print error message and STOP

Figure 3-1. Subroutine INPUTD (Continued)

o i he bt NS 5 S A A AR AR IS VAR g SN Ak 4 SR ERCR AR St G AU A Sl e S TPy B A R RS AR TR R ST RS
pri INPUTD W
®

D

:': ﬁ:":..q'
,i xjfff Read team requirements for all teams, personnel then materiel, for
- all missions - Team requirements are read by factor, IPRND(M,2) where
- M=1,16 and is the number of entries on a card. - The factor determines
o the number of tasks the associated requirement will be applied to. -
- Factors for each team must sum to the appropriate number of tasks

& (personnel or materiel) - Detailed flow chart of this section is

< attached. See D

5 ‘ Accumulate team requirements for team 2

A thru NTEAMS to include the requirements

x of lower number teams

;% Print team requirements, personnel then materiel,

| for each mission. Maximum of eight teams per

3 page, format determined by number to be printed.

z RETURN

1

e

o

4

-

&

')

'

o

2

N

I.:

f

e

A,

_ Figure 3-1. Subroutine INPUTD (Contirued)

' B

Py

ot

R 3-6

.
-
'
3
'
.
.
'’
)
.
v
.
.
1
I3
&

..

........

-0 A da e o e e " "
- < . Y - .. - o LI - LA e S N T T

o

INPUTD (Read and file Team Requirements)

.
S

20,0, B, oy A R
PP PP P

(L ELIE

R
"

LKA

READ(IN) (IPRND(M,1),IPRMD(M,2) ,M=1,16)
FORMAT 16(I2,13)

P

g s
e
.3

| SO

o
2
)

32 SR Ch A RN LU SR O S L SR PPNt PLECOLER 1 LA & AT P ot oy e)

ER INPUTD

N = IPRND(M,1)

NO YES

-

ISUM = ISUM + 1

NO YES

le=! ITEAMP(L,J,ISUM)=IPRND(M,2)

A 4
L ITEAMM(L,J,ISUM)=IPRND(M,2)

- Figure 3-1. Subroutine INPUTD (Continued)
.'s’z

- 3-8

. ") N P I O o o T - -
L'y h Al Tl ((R RG] A T SR e L e -',;

e (M SN e)
BASROAD

“‘""f{i

fads

i

COMMON BLOCKS

OLY1
GENERL
INP
KTR2
PD2
PRNTIT

3.2 " SUBROUTINE COSTMM (NPDSET)
3.2.1 General

Subroutine COSTMM (Figure 3-2) is referenced for each set of
degradation probability values (PDSET) as a cost initialization rou-
tine. For each individual PDSET, cost matrices are calculated for
both personnel and materiel categories.

The TITLE array, an array of alphanumeric title words, is
read from the input file for the first PDSET. (If an 'END OF FILE'
is encountered while attempting to process this read, control is trans-
ferred to a program STOP. Therefore this input statement acts as the
normal termination check for the AMORE program model). The TITLE
array is then echoed to the output page and determination of the per-
sonnel probability of damage array begins.

Initially all array elements of PERPD are set to -1.0. The
first input record of damage information is then read. The proba-
bility of damage (TEMPPD(1)) is read, followed by the commander's
decision time to assess damage and initiate recovery (ITEMPD). .On
the same input line an index array (INDEX(j)) of as many as 14 values/
line may follow ITEMPD. The elements of this index array correspond
to personnel task numbers. In this manner, indices of particular tasks
are identified with the ITEMPD and TEMPPD(1l) value of the same input
line. (An alternative: When each of the personnel task shares both

[e, SR

el S PN

R,

o
5
:

" _\"'\".' -
U LN AN A

Al N cal S

1

¥ N AT A T A o .
W AN YT 9,0y R

TEMPPD(1) and ITEMPD with all other personnel items, as single '-1'
can be substituted in place of the entire input INDEX array.) Subse-
quent lines are read until all personnel items have been assigned a
probability of damage value. These values are stored in array PERPD.
Corresponding delay times are stored in array PERDLY. Any attempt to
reassign indices or to assign indices of personnel tasks that do not
exist will result in an error STOP.

The above arrays are then formatted and printed for the
particular PDSET.

Similarly, materiel item probabilities of degradation and
delay time (TEMPPD(1), (2) and (3) and ITEMPD respectively) are read
from the input file. The element TEMPPD(1) is the total probability
of damage, all categories. TEMPPD(2) is the probability of moderate
and severe damage, TEMPPD(3) is'the probability of severe damage. These
values are stored in array MATPD according to indices read from the
same card. The value ITEMPD is likewise stored in array MATDLY. The
results are then printed.

The next step in COSTMM processing is to check if the cur-
rent run is of an input-only type (IONLY.GE.l). If this is the case,
additional initialization need not be performed and control loops
back to read the next POSET values. Otherwise, certain maximal values
must be calculated. The largest repair time within mission horizon
time (LPAIR), the largest delay time (LDELAY), the largest transfer
time (LTRAN) are determined from existing values. The variable MSURP
is calculated by summing these values, muitiplying by two and adding
one. This value is used in TRANS as the cost for assignment of dummy
supply or for assignment as surplus. This large value makes any feas-
ible transfer preferable. Another large cost (MBIG) is then calculated
using MSURP. MBIG serves as a large dummy cost when a transfer is in-
feasible. It is a value larger than the total cost could be if all
transfers made had the largest possible cost.

3-10

AT AT vt e et Y .t S ote T ety et te e .
. _. . .\~ LI A L AR Lo R S P P A A

) N + 1 L. " . ' - . CEE
h hod . R Y PO L AL P Yk P P wiL” L P P T A P L P i P

COSTMM (NPDSET)

[__READ suo-sropsrmsz

[CALCULATE LARGEST
REPAIR TIME (LRPAIR)

y
CALCULATE LARGEST
DELAY TIME (LDELAY)

2
CALCULATE LARGEST
TRANSFER TIME (LTRAN

:
[CALCULATE MSURP]

WRITE TITLE
INITIALIZE PERPO ARRAY TO -1.0
READ PERS DAMAGE INFQ
INTO ARRAYS

[CALCULATE TOTAL # ITEMS|

CALCULATE MBIG

r DEVELOP PERSONNEL !

i_ COST MATRIX PETML@ |
[
|

ANY ERRORS
N INPUT

OEVELOP MATERIEL
COST MATRIX

m
el
=
(=]
=
— - e e ot e e o ——

INITIALIZE MATPD ARRAY TO -1.0
READ MAT DAMAGE INFO
INTO ARRAYS

ANY
ERRORS IN
NPUT

NO
WRITE MATERIEL DETAIL
DAMAGE INFO

=== - - - - J

ERROR
STOP

—

Figure 3-2. Subroutine COSTMM

9 200" Bt My A B ISR b SRA- T B e A S) e A SUa A AN i v A e S S L AL R T S A O A SO A 2l B A A R A ST RIS
- >N PO R A A S A e K

....... o

cosrm, (READ AND WRITE PERSONNEL OAMAGE PROBABILITIES)

IS =0 .
e (NTASK* (NTASK+1))/2]
30

v 130

YES

ERROR

€rpo(INDEX(J SToP

> -1.4

ERROR 0

YES

PERPO(INDEX(J)) sTEMPDD(1)
PERDLY(INDEX(J)) = TEMPO
ISUM= [SUM* TNDEX(J) PERPD (3)=TEMPPO(1)

3 4 P'PEEEYEJ\-ITE."!PD |

WRITE(I0UT,1005)J, (TASK(J,NT,1)NT=1,3) PERDLY(J),PERPO(J)

<

Figure 3-2. Subroutine COSTMM (Continued)

TR RE S S MO ST A A A

T T U - . -

. CosTMM (READ AND WRITE MATERIEL 0DAMAGE PROBABILITIES)
DE'BTAIL

lxsun =0
K= (NTASK*(NTASK+1))/2

- B e ") e i SR AR AL T DL M M A ANl Tk NPT S AR R AP L AL e adth aynil SURY aies)
S LW TN TR L RN A N S A A N 2 AN A e A AL S A N

200 | —
‘ READ(IN, 1007) (TEMPPD{dJ),0"1,3),11EMPO, { INDEX(L) ,L=1.12
.?(L
& J=2
N ves/ 3.3 NO
T J = J+l
L+
' 3
220 PO(d- YES ERROR
;.-"”‘ ') SToP
B NO
7
3
B
;‘;;‘ IND=INDEX(J
R
_ YES
;,j;,,'é NDEX(J) | ERROR
> NTASK sT0P
‘ NO
e e
el INDEX(J) >
A0y =0
NO
g7
" A YES
4 .1) INOEX (J)
¥ . = -1
; YES/J = 1 NO
o HO J » NTASK
706 TPO(INDERNYES —
- 1) > - 290 BP0 (0,1)NIES
N ' NO | [
3 N
. MATPO(IND,1)=TEMPPD(1) STOP
»d MATPO(IND,2)=TEMPPD(2)
MATPO(IND,3)=TEMPPO(3) MATPO(J,1)=TEMPPO(1)
] MATDLY (IND)=ITEMPD MATPD(J,2)=TEMPPO(2)
' [SUM= [SUM+INDEX(J) MATPD(J,3)=TEMPPD(3)
> -) MATDLY(J)=ITEMPOD
e !
5 mm-mm(a.l)-mm?.n
MTPD2=MATPO(J,2) -MATPO(J,3)
= 310 MTPD3=MATPO(J,3)
(_WRITE(I0UT,1008),d,(TASK(J,NT,2) ,NT=1,3),MATOLY (d),

(MATPO(J,K) ,K=1,3,) ,MTPD1,MTPD2 ,MTPO3

Figure 3-2. Subroutine COSTMM (Continued)

.

!;,)-;::sf.
! <
f:l f.:'c':-"
SN p
:Lﬁ‘g
."c;;‘
- 3-13
l”"
ALY
I ‘v e i
AN, A ek Tt) oy - \. \..l‘(.i.. -.~ -‘. - .-.,_..-‘.l', PR R - .:"-., L

— . v
> L £ 4 PN S0 e Lo i) AL it M e G i M AR SRS it s LA P 2 R AT s s g

| COSTP(J,K) MBIG l [COSTP(J,K)=TRANP(J,K)|

le 1

ST

e -

R

5
g
N
S

J,K)=COSTP(J ,K!+PERDLY§J}

FLOAT(COSTP(J,K)) > TTILST

¥ YES

2§ Figure 3-2. Subroutine COSTMM (Continued)

3-14

‘n\

SR SUBIYRI Y e O

2T SN P P ST AR A AL oS o 2 A e DR AR Ot Rt Sl g AP e SciA e S R AR AR Tt Rt e e et i - St

COST™MM {Construct Materiel Cost Matrix)

W : YES

COSTM(J,K)=TRANM(J ,K)

RETURN o

NOTES:
i) FLOAT(COSTM(J,K))
>TTILST?

iy FLOAT(REPTIH(J 1)
>TTILST?

") FLOAT(COSTM(J+
NTASK,K})
>TTILST?

1117) FLOAT(REPTIM(J,2))
>TTILST?
13+4) FLOAT(COSTM(J+

NTASK*2,K)) [K.KJ=COSTM(J ,K)+REPTIM(J,1]

STTILST?

‘CO ISTM(J+NTASK, K} =COSTM(J+
ASK, X) +MATOLY (J)

$ 260
[COSTM{J,X)=M81G |

TCOSTM(J*NTASK"2 K
NTASK*2,K)+MATOLY(J)

465

mm_nsx,x)-neig 1

470
'COSTMEJ*NTASK'Z.K)-MBIGI

figure 3-2. Subroutine CCSTIT {Continued)

R N

‘\--\\‘\

e 'g_&gsl\ RN _‘.\ n_ ;*\

p ,'rl-'.'.r:' et RARA AR A4S SRS i M 15 S0 LA bl R LA L AL LS LTS s S aSLaN ML SRAAC AT A

N> PRNTIT

oy The cost matrix for personnel items (COSTP) is developed from
W” - the input transfer matrix (TRANP) and delay time array (PERDLY). (Anv .
unfeasible transfers are assigned a cost of value MBIG.)

T

Similarly, a materiel cost matrix is built (COSTM). How-
ever when calculating materiel costs, repair times for light damage
(REPTIM (j, 1)) and those for moderate damage (REPTIM(j, 2)) must be
included and the array, COSTM, is extended with separate sections for
1ight and moderate damaged equipment.

3.2.2 COMMON BLOCKS

DLY1
DLY2
DLY3
GENERL
INP
KTR1
PD1

3.3 SUBROUTINE INITL (NPDSET)
3.3.1 General

Subroutine INITL (Figure 3-3) is used to initialize certain
arrays and work files to zero values prior to the start of processing.

Initially, the statistical arrays for Subroutine STAT are
set to zero (TMEAN, SD, GMEAN, GSD). The work array elements, following
determination of an adequate maximal number of the elements (I), are
also set to zero.

If the choke flag indicates that choke data is not desired
for this particular run (SCHOKE<O), then choke variable initialization
may be omitted. Otherwise both materiel and personnel record length

...

= INITL (NPOSET) \
o ;
(_:\;:-.;:‘ DETAIL| INITIALIZE VBLS FOR |
<o A | STATISTICS CALCULATIONS |
T0 0. (USED IN STAT)
< FETAIL'. INITIALIZE WORK ARRAY TO
8 | ZERQO PRIOR TO CALCULATIONS
o YES
el SCHOKE —
3 ?3 <0
] NO
g DETAIL | FOR CHOKE:
{ C CALCULATE VBLS
25 CONCERNED WITH
o DEFINE FILE #21;
e WRITE WORK ARRAY TO
N FILE #21
2
g
o
Lo M -
o ERROR YES
o) @ STOP
:{i o | NO L
)
W YES
b RETURN
'ﬁt, DETAIL| FOR ASN: ’
bt D CALCULATE VBLS
- CONCERNED WITH
. DEFINE FILE #22;
& WRITE WORK ARRAY TO
X3 FILE #22 FOR BOTH PERS
X & MAT.
s
X YES NO
§;:f E:;Rrggﬂ RETURN
£
R Figure 3-3. Subroutine INITL
W
. 3-17
i
:*f;'a‘, A N N N N R A S AN NP TR AR SN IR N

b
:3 : o

o

¥ J1=J-1
GMEAN(T,J1)=0.

" ’% 650(1,J1)=0.

7o y

¢

o,

o NIt DETAIL) (ZER0 HORKING ARRAY)
;:v
¥
I

=MAXO(NTASKS (1) ,NTASKS(2)*3)+1
it?ﬂﬁO(NTASKS(l),NTASKS(Z))+1

P

YES

o ol W A)

P

oy

.0
¥ Yt N ¥ 3

&

| 200

)

et : Figure 3-3. Subroutine INITL (Continued)

W7

3-18

. v o e v ~ v e .
g . Phallaual i LYY Dl I I AT AR N N T S S EALEN RS L AR L S S TR . SN LN

INITL

(SET UP AND/OR ZERO DEFINE FILE 21)

\G [LasTPenLGTHP/2

s RLGTHP=RLGTHP+2

3 LASTP=LASTP+2

) RLGTHMeNTASKS (2)*2*2*3

o

l‘ ‘ i

iﬁ&

LASTMeRLGTHM/2
RLGTHMeRLGTHM+2
LASTMeLASTMS2

Ll R

KOUNT=KOUNT+1
WRITE(21'XQUNT) (WORK(L),L=1,RLGTHP)

- KOUNT=KOUNT+1
. RITE(21 KOUNT) (WORK(L) ,L=1 LASTP}
¥ KOUNT=KOUNT+1

WRITE(21'XOUNT) (WORK(L) ,L=1 ,RLGTHM)

;i KOUNT=KOUNT+1
& WRITE(21'KOUNT) (WORK(L),L=1,LASTM)
'{ AT Figure 3-3. Subroutine !NITL (Continued)
2 S f.:)
s R 5%
3-19
%

\S - SN R YR LI S T "o ¥ T o ~ ", . PR et N ey vt N
‘e 0“,5.\‘.} _.A.. ", ,-."'\‘ ..q“a ..~~ ".ﬁ\"-' ;~,~“~~- “a. \‘\. \.‘_ _‘. AN - RIS

" L I N

w INITL

11 . (SET UP AND/OR ZERO DEFINE FILE 22)

RLGTHP=NTASKS(1)*(NTASKS(1)+1)+2
RLGTHM=NTASKS(2)*3* (MTASKS (2]+1]+2

§

NO

VES IDE.FINE FILE 22(NIDX,MRL22,U,122)

KOUNT=KOUNT+1

WRITE(22'KOUNT) (WORK(L),L=1 ,RLGTHP)
s —
o4
v'
«
S
R KOUNT=KOUNT+1
A WRITE(22'KOUNT) (WORK(L),L=1,RLGTHM)
- .
132
x.
%
s
‘52:;"3‘ Figure 3-3. Subroutine INITL (Continued)
Y

3-20

AT

;.-

A
1
£

LA e

¥ et <

> i

o

v SRRt

constraints (RLGTHP, LASTP, RLGTHM, LASTM) are determined for the
choke file. This file (#21) is then defined and all elements of all
records are zeroed.

If the assignment flag indicates that no assignment data
is to be output for this run (ASSIGN = 0), then assignment data init-
ialization may be omitted. Otherwise record length constraints (RLGHTP,
RLGTHM) are determined for the assignment file. The file (#22) is
defined and all elements of all records are zeroed.

3.3.2 COMMON_BLOCKS

GENERL
KTR2
PRNTIT
STATR
WK2

3.4 SUBROUTINE KILL (MP, NN)
3.4.1 General

Subroutine KILL (Figure 3-4) provides the stochastic appli-
cation of the input damage probabilities. The subroutine is called
by the MAIN routine on each iteration, once for personnel and again
for materiel. The argument MP defines either personnel (1) or materiel
(2). The argument NN is the iteration number and is used for the appli-
cation of a variance reduction technique. The variance reduction tech-
nique is to draw new random numbers on each odd numbered iteration
and to use the complement of those random numbers on the following
even numbered iteration.

The subroutine consists of two sections, personnel and mat-
eriel, which perform the same basic functions. The initial authorized
quantity for each task or materiel line, in array REG, is put into the

o R N A PP . g .
*\ .\'l‘, 5 * - (LY '\.

.....................
...................

N (jf?-) survivors array, ISOURC. For each individual or item in this quantity
- a random number (RANDOM) is obtained. (On odd numbered iterations
the random number is obtained from the function BARN and the complement

% is stored in array RAND. On even numbered iterations the random number is
; drawn from the array RAND.) RANDOM is then compared to the probability

“) of damage for this item. If the random number is larger than the damage
N probability, this is a survivor. [If RANDOM is smaller, then one is

N subtracted from the survivors array. In the materiel case, this com-

; parison is made against the accumulated probabilities of 1light, moderate,

and severe damage (MATPD(I,l), where I is the line number). If the
item is assessed as damaged then further comparisons are made of the
random number with the accumulated probabilities of moderate and severe
damage (MATPD(I1,2)). If RANDOM is larger than this value, the item is
assessed as light damage and is added into the light damage section of
the survivors array. If RANDOM is equal or smaller than this last
value, it is compared to the probability of severe damage (MATPD(I,3)).
. [f RANDOM is equal to or smaller than MATPD(I,3), the damage is assessed
’% as severe, otherwise it is assessed as moderate damage and is added into

- .-',.._,‘.

e-ataals

; - the moderate damage section of the survivors array.
3
¥
bt Damage-is assessed against each individual or materiel
“ item in each task or line. The array of personnel or materiel survivors,
; ISOURC, in common block SURV results.
2 3.4.2 COMMON BLOCKS
. GENERAL
! INP
N PD1
¥ SEED
§ SURV
]
I
a0
N

3-22

R T R S

. e . LI -..":-‘..n ‘--'. PR S [I Tt T e] '.
P R T L T P . S T " A N R R T

. i» l'\ B
-~

- .
A

AN KILL (mP,NN)
ot
@

IBR"MOD(N, 2)

MATERIEL

PERSONNEL), NO
NRAND = 1

| wraskewTasks(1) |

Ml g o it et Bt R e e B A N M ARt e A it @ AN NS AC A A A s At s ooy

RETURN
| tsourc(r)eres(t,1) | 0
yES
h 4
[rsumees(I,1)
L -1 N\
’—-'“C RN S .
3 =d el
T y
TSOURC(T)
*1SQURC(T)-1

RANDOM RANO(NRAND) H YRAND=
L2, =BARN(1) e1.3-RANDOM NRAND+1
L%
&

Figure 3-4. Subroutine KILL

KILL (MP,NKN)

|
Xy
2 (1)
3 3’1 ’

B MATERIEL
g\j’ | NTASK = NTASKS(2) |
Iy,
: 1=l YES

N (1> NTASKS?)— RETURN
&) ; | EERE
&
N2 ISOURC(1) REG(I.2) 180
& . ISOURC(I+NTASK) = 0

ISOURC(I+(2xNTASK))=0
PPt |
A
23
;§ ‘ ! YES
Aa REG(I,2)
?3;'.-: < 0

NO .
[1sum = res(1,2) |
o L3l N\
3> ISUM? eyl

JeJ+l
150 T
YES 1 t
ISOURC ([+2xNTASK)=
[+2xNTASK)+1
RANDOM. = [SOURC(I1+2x)
RAND(NRANOD)
RANOOM) ISOURC ([+NTASK)
=BARN(1) s[SOURCE([+NTASK)+1
% (NRAND))
%, RANO(NRAND NRAND = ISOURC(I) =
2 = 1.0-RAN00M || wraND + 1 ISOURC(I) -1
A
v
'i% Figure 3.4. Subroutine KILL (Continued)
Ry
)
" o ’d "“.
SO
3 (N X
&
-

L L
-‘; IC L AR ._‘-'_';

N o

“ -
s 2

o "

N
A

)
X
}]
e

o Y L

LA R

BV L

¢‘
N 0
~la

\‘“;:.:!f

S LXRAL A,

¥
t
¥

8
A

n.q
4

3.5 SUBROUTINE MAXT (MP, MF, NUMTRY)
3.5.1 General

Subroutine MAXT (Figure 3-5) determines the maximum number
of teams which can be constructed using the surviving resources. This
is accomplished using a binary search technique to vary the team number.
Subroutine TRANS is called to determine if a feasible solution
is possible with the existing resources. Subroutine MAXT is in-
cluded within the innermost loop (missions) of the MAIN routine. The
arguments MP and MF distinguish between personnel and materiel and
identify the mission number, respectively. The argument NUMTRY pro-
vides MAIN with the number of teams which could be constructed.

Subroutine MAXT begins its process with a team number at
the mid-point of the range, 1 to NTEAMS. The call is made to subrou-
tine TRANS which allocates the surviving resources to the require-
ments of this team. TRANS will always provide a solution by either
adding dummy resources or by making infeasible allocations. On input
these infeasible transfers are identified by a minus one (-1) in the
transfer matrix. For use in the transportation algorithm they are
given a very large cost (MBIG) and are therefore the last recourse for
a solutionto the allocation problem. MAXT determines the feasibility
of the solution by examining the requirement for dummy supply and the
cost of the allocations made. NOTEN is the variable which is equal
to the dummy supply required. If NOTEN is greater than zero the solu-
tion is not feasible. If this check shows a possible feasible solu-
tion, then the cost of each allocation is examined. If the cost of
any allocation is greater than or equal to MBIG the solution is not
feasible.

MAXT then adjusts the team number (NUMTRY) for the next trv.
If the solution was feasible a higher number team is tried. If the

MAXT(MP ,MF ,SUMTRY)

JMAX = NTEAMS + 1

[MTRY = (JMIN + JMAX)/2]qmm
10 3 :

!g& TRMSSHP,MJNTRY..‘F,ISGJRC.I)!

NTASK = NTASKS(MP

YES SOLUTION IS
NOTEN NOT FEASIBLE
> 0? IF NOTEN > 0
MO
%0 YES
100 (83 _= YTA
SOLUTION IS
YES a_ FEASIBLE ng

Y
JMIN = NUMTRY &

: \ 45

Y _
)? & K 140 YES
AN J SNTASK?
- =
) 140 &

M

SOLUTION [S MOT
FEASIBLE IF COST
>urlG FOR ANY vES
ALLOCATTON

SOLUTION IS MOT

FEASIBLE [F COST
AMBIG FOR ANY
] ALLOCATTONS S
RETURN
NUMTRY o —
CALL TRANSIMP,JIUMTRY 0F , ZSOURC. J f=—u# 3E-URN |
. gg‘f?':
3 Figure 3-5. Subroutine MAXT

3-26

L -\‘iﬂ' '...\ Y h\-"- - _b'. --. ‘.‘.‘-‘ v‘. -'. -_-'-.. -
RS, HURRRLE UGS ESERA, LA SA POV

solution was not feasible a lower team is attempted. After each iter-
ation of this process JMIN is the number of the last feasible team
and JMAX is the number of the last infeasible team. The next attempt
is made for the team number midway between these two. During this
process the variable ILV, last in the argument list for the call to
subroutine TRANS, is set to one (1). This variable flags TRANS to
_return immediately if the solution is proved to be infeasible, such
as a requirement for dummy supply. This reduces the number of times
that the full transportation algorithm is solved. The transportation
algorithm is always solved if there is a possibility of a feasible
solution. When the difference between JMIN and JMAX is one, JMIN is
the number of the highest team with a feasible solution. If the last
solution was feasible, control is returned to MAIN. If the last solu-
tion was not feasible then TRANS is called once again, with ILV=0, to
provide the solution for that team, number = JMIN.

SRAERITH

: e T o AR
;R
2 1) "‘ﬁu d

3.5.2 COMMON BLOCKS

DLY3
GENERL
KTR1
KTR2
SURV
WK1

SUBROUTINE TRANS (MP, NUMTRY, MF, IS, ILV)

Genera)

Subroutine TRANS (Figure 3-6) is an application of the Munkres
algorithm to solve an allocation problem. (Munkres algorithm is dis-
cussed in depth in Appendix A.) This subroutine is called by subrou-
tine MAXT and by Subroutine CHOKE. It contains one Entry Point,

ALTOPT, which is entered only by a call from Subroutine CHOKE. Sub-
routine TRANS allocates the surviving assets to satisfy the demands

3-27

]
&

o T A W e

bad 8. 4 0

I

IR TR

s R

L

L2 | ey

L S wip

o oy

w
o
\‘.

of a particular team and mission requirement. These requirements are
established by the calling subroutine through the arguments: MP,

-personnel (1) or materiel (2); NUMTRY, the team number (1 to maximum);

and MF, mission number (1 to n). The arguments IS is the array of
surviving assets. The argument ILV is a flag which is used to reduce
the number of times the transportation problem is completely solved.
If ILV is zero the transportation algorithm will be compieted. If
ILV equal l,quick checks are used to determine if a feasible solution
is possible. If the total demand exceeds the total resources or if
the demand for any one task line exceeds all possible resources for
that line, no solution is feasible. During the search to find the maxi-
mum possible teams it is not hecessary to complete the transportation
solution if either of the conditions exists. Other calls set ILV=0
and a full solution is found.

Subroutine TRANS will always provide a solution to the alloca-
tion problem. It does this by creating a dummy demand if assets ex-
ceed requirements or by creating a dummy supply if requirements are
greater than the assets. The routine may also provide a solution by
making assignments which are considered to be infeasible. These assign-
ments are made using a very large cost (MBIG) which readily identifies
them. MAXT determines if the solution is, in fact, feasible or not
based on the use of dummy supply and/or a cost greater than or equal
to MBIG. The call from CHOKE results in an infeasible solution in all
cases except when all teams can be built.

Entry point ALTOPT is entered only by a call from CHOKE when
the option flag MULTF is greater than zero. This part of subroutine
TRANS searches the original allocations for alternate optimal solutions.
Alternate assignments are examined only for the 'CHOKE' points, that
is allocations of dummy supply (Cost = MSURP) or allocations made with
cost MBIG.

C £ i £ S A A et LR R A RAT IR A A M R R IR AU IR A SR A N AR

TRANS (MP,NUMTRY, MF, IS, ILV)

PERSONNEL

I = NTASKS(1)
J=l+1]

NOTEN = O
ISUM = 0
JSUM = 0

MATERIEL

340 J'NTASKS(Z)
[=aJd*3

g X=0 J1=J+1
4 ,

YES As1l
IA>1? N0 YES

B ' A=IA+
'Sn‘ 310
ISUM = ISUM + JR(IA) ISUM = ISUM + JR(IA) |
5 JSUM = JSUM = JDXIA)

JR(IA) = IS(IA) JR(IA) = IS(IA)

JO(IA) = ITEAMM(NUMTRY ,MF,IA)
JSUM = JSUM + JD(IA)

= MSURP

9(IX,JX) = COSTP(IX,dX)

e S
B AR gl

&% P(IX,dX) = COSTM(IX,JX)
Ll e i . . :

) ifi_@ Figure 3-6. Subroutine TRANS

A o

s ’u s

N

A

T

s L.) .
ol

p 3 2R IR T I I I P PR AN B .t e "mTm ™ “ e . * 4 a4 v e e - IR IR ST SR T)
N L B T G A 0 A, ST OISR AR RIS, |

T4
B
} |
2 Pt ° }, d

S

?
-

iy
Rose

£
“‘..4 o

ML

#
S

NG
e

LN

DK

o8
Xy
AT
Ravk
" -
S OO
y: %
o 3?353

)ﬁ»

TRANS
(Demand > Resources)
NOTEN = JSUM - ISUM
ILV YES 500
>0 4
X =0
NO v
J(J) =0 RETURN
I1=1+1
JR(I) = NOTEN
YES [ox =1 \ o
{3 >3 —
= JX = JX + 1 P(I,JX) = MSURP
YESﬁA ! ANo \ L/ (L,J%)
1A > 1 4 320 !
\IA=1A+1/
LK)
e foa=1 '\ "
S oA~ —y
\A=0A+1/ IR(IA) = O
3 JC(JA) = 0

Figure

IALLO(IA,JA) = 0
Z(IA,JA) = 0

y

3-6. Subroutine TRANS (Continued)

(RESQURCES >DEMAND)

RN J0(J)=ISUM-JSUM

YES

NO

IGGJ=NTASKS (MP)
1GGJ2=1GGJ

iy
A

- e

1GGJ2=1GGJ2*3
J

AN r"‘.'m".

[xa=1 \
;% fe—{ JJA > 16GJ —

M Y \ JoA = JoA+1/
¥ Fozso ves
i”' na

?
JD(JJA)
=0

[HAV = 0

; [
IIA = 1

: E Mia > 16602

33 \ I1A = 11A+1/

i 2 9240

NO

NO

L& NO

YES [HAV = THAV+JR(IIA)

P s NOTEN = 1 y
% IR ; X =0

RETURN Figure 3-6. Subroutine TRANS (Continued)

TP

*
.
'

..........

....................

[(A>3 '
X = MBIG + 1 YA’JA"‘ YES/ IA=1§
3
s

NO

(1A,JA)=P(IA,JA)-X)

Figure 3-6. Subroutine TRANS (Continued)

T—(1A>1?_,\
no / JA=1 \ Yes NA=IA+Y

e
X = (MBIG) + 1

8 4

JA > J?

JA = JA+1

NO
YES X = P(IA,JA

JA =1 N

ves LY aa>97 Y—m

1 |P(1A,JA)=P(IA,JA)-X

4

R I oy >
a4 LIS

AR A,

" i
T

‘:
X
,r)

O A e T
FrNGEL Y v

IA=1

IA>1

KX=MINO(JD(JA) ,JR(IA))

1Q=1Q+1

JC(JA)=1

v

y

YES

JD(JA) = JD(JA)-KX
JR(IA) = JR(IA)-KX
IALLO(IA,JA)=IALLO(TA,JA)+KX

Figure 3-5. Subroutine TRANS (Continued)

3-33

ALY "'.-'\\ L R \.s"-' a9 SNy -.'\.' N

ARSI

g
St

Vo s
>4 55 4Py,

.

& ;?“19. %

T o

e
-

L R

IR

o

JEP— C M AR .-
R L 0¢1 'f‘l 2% \"L\“"“" fo‘ 51 o

Z(1A,J7}=1
JCJZ) = 0

STE?

figure 3-5. Subroutine TRAMS ‘Cantinuea)

i N
-f::*”

3-34

N TR L S P N T ST P S S T TP,
A S N A S RS L Ot

L J

2(IA,JA)=2

A
[2(IAdAje3 |

STE?
A

% 2t L GL AL aliel AL LA Lt s LS R At pi Jaf S0 s et Al e fac le e QRS Rt BE TR AR A I R e e A e I R IR

X

o

o

4

.‘__‘J

oty

N I

A /_ ey

h ‘q \:‘ M
*ale. Yy

e

B o
5

3
3
3
3

s

e ey

%
)
Xy
3
o

g
Py
-’

LR Wt

FrAd

o

v W e

¥

X
.
X
|
)
.
!

S

o

¥ Py V) (AN g ¢ 70 g "0 "
AN LB AR N AN B o

ICNTP = 0
ICNTHM = 0
JAl = JA
IAl = [A
KX = 0

IMZ(ICNTH) = IA
JMZ(ICNTM) = JA
181(ICNT™M) = [ALLO(IA,JA

[«x = 181(1cN™H) |

NO

[AA=[MZ(TCNTH)

IA = [AA

SRROR
sTOP

JPZ{ ICNTP)=jA
IPZ(ICHTP)=[A

teNTP = 1eNTP -1

Figure 3-6. Subroutine TRANS (Continued)

N N DI IS S
N LR N Ty

3-35

-

.-.‘I'.. ‘: rJ ~(' ~.I ..'.,- _-_ .. ‘-‘;_.*.-‘:._..-“..;_ .

) s
L o SR

AP S S R Vs

- o

»

FeEFEE

7 A I P -

g e LA

P

e

Nl N

YA ks

e Wt kY

. Wy
N n,i.;

TRANS
—s] JQ=MINO(JR(IA1).JD(JA1)) |mmmm
3
S=0
T =0 IALLO(IA1.JAL)= TALLO(1AL ,JA1)+JQ
=0 JD(JA1) = JO(JA1)~JQ
IP1=1CNTM JR(IAL)=JR(IA1)=JQ
JPLe[CNTP
_ Y _/1ente
YES N >0
YES
A
JAJPZ(1CXTP) ' LA=IPZ(ICNTP)
JQeMING(JR(A1) ,dD(JA) ,KX JA=JPZ(ICNTP)
‘F_—-‘l :
IALLO(TA,JA)=IALLO(TA ,JA)HIQ
(9= IMZ(ICNT™) JD(JA)=JD(JA)-JQ
JSegMz(TENTM) JR(IA)sJR(IA)~JQ
!
TALLO(I8,J8)=[ALLO(8,JB) ~JQ
J0(J8) = JB(JB)+Q ' —
JR(18)=JR(I8)+iQ - N
€S
| ICNTP={CNTP=1 |eepd

Figure 2.5,

PARSEON

N

L)

o LS e

Subroutine TRANS :Cantinued)

T
- \5'&"5"«"1

&

T <

3

E;" [CNTP=l

ICNTP > JP1?

i ICNTP=ICNTP+1

. IPZ(ICNTP) =

; |]

Al

i ICNTP = 0

- ICNTH = 0
) KX = MBIG+1

0

5 /o =1\

ét‘ [JTSTHR(IA) ICNT™M >[P1?

.

' = S =0
)] ERROR | : IMZ(1CTM) =0 JT=0
Py TV sToP JMZ(1CNTM) =0 IP1 = 0

o M) =0 Q=0

¥ [B1(ICHTM) Pl =0

Ny IAl = 0

£ JAl = 0

'-"" [B=0

X =0 JB =9

4 %0 ol ves
! A >I?

k4 A = (A*L /
/ GdA=l \ 36 4

I(IA,0A)=0
{R(IA)=0

" JC(JA)=0
1, - 28

v?fi ®igure 3-4. Suoroutine TRANS lontinues)
3!
<k

13;§ 3237

s w e AT . " et w et T et e et e e ettt et .
) ."‘)“‘. \, '.! ‘t V‘ -'\".‘1."5‘ . \!\..‘ o R KA .,-'.- 3 .-q‘.(.~..‘-_ o T e e e

[

d

]

~ TRANS
r

X=0

IR Ny
TSt
\ 1A=IA+1 / IA=1 NO

ves o5 12> 1

YES\ [A=[A+l
115

SN

a

) f‘.

ke P JYPE

YES

S R

(b(IA,JA)sP(IA,JA)-X

s

ety

v
YES [3R=1\ NO
e— >3 r—

JA=JA+1

NO

YES

Figure 3-6. Subroutine TRANS (Continued)

£ | P(1AJA)=P(IA,JA)+X |
H AR A

* S—C@ STEP

* 3

;

Lo L R e ket it el At adh aull Anil sl Rafiiodgl Sull sl anfil Nl el S LM AP I e S B e e e A 4 B ER A S R

..............................

ENTRY ALTOPT (MP)

Prreg

y ENTRYT
-E.‘& RS

IR,

i ' L =1

v IM1=2J-1
¢ LAST = 1

!
YES /—IA’I \ NO

IA>I?

» IA = [A+]

" JA =1

YES F . \NO

A>J? Py
K¢ = 0 \LA =0 |/ IR(IA)=0

JC(JA)=0
5120
L T
YES [re1 \ NO "

Iy >1?
\ Iv=1v+s1 / [KK =0
5131 !

Lam,

b

AL mmn ey

.-’_,_”";rqa“,

Rty

YES

NO

KK = KK+1
J

T

IR(1Y)=1
1 1KC = 1

f

2. & A

x% -

Figure 3-6. Subroutine TRANS (Continued)

...........................

DO AN U G S R A L AN YRS TS Y
o {;'f;.{l‘ih.ﬁ'{'s'" A i."th*("nL(-"'_' AL AT,

z.'; JA=JA+] KK = 0
45141

i 9 IA 1

_ NO

| | IA > I? .

3 [A=TA+]

»

3

) INC = 0

JNC = 0

;E ?

g P(IA,JA)

| A =1 JC(JA)-l = 0

LY

b JKC = 1 KK=KK+1

3

JNC=JNC+1 _J'

1 AT
]
ol B
[J
S:
+
—

L A R

.‘o
INC=INC+1 F'_J REWIND ALTAPE
P
Em's ALTAPE ((IALLO(IX,JX),dX=1,J)

e

[X=1,I)

[, \"\ .
:}‘ s$\,
| Figure 3-6. Subroutine TRANS

(Continued)

. 'wd (..... - - - - . . e
e 0% .\('. TN DL Y e e e N e e e e T T e e
; | WO AN s Nt A I N T I AR e TN
Wy . M IO AT e R L

NO

ENTRY ALTOPT

REWIND ALTAPS

YES

6010

!

READ ALTAPE ((IALLO(IA,JN),JN=1,J),IA=1,I)

ICHAIN = @

2
g

% REWIND ALTAPE
3 T

RETURN

o
4
'%- -

 IPZ(1I) = O
JPZ(JJ) = 0

£

ol

,
3

o

‘\‘ LR

LN)

E2

Figure 3-6. Subroutine TRANS (Continued)

A Yoy

AIIG B AT N N e e e e N e ALY AR RN,

4% 49 ~V’X.‘*_T_'_‘_v;l_—hﬁ~R*Yv Rk AR A g S 24 26 2 00 o8 L A e g I —— -

ENIRY ALIORY - & 7 0 RN

2(12,d2) = 0

NTK=NTASKS (MP)

NTK = NTK * 3
y

ILAST = N g
JLAST = Jn |
Z(IM,JM) = 3
ICHAIN = 1 |
IPZ(1) = ¥ H
PZ(1) = JM
X =1

Figure 3-5. Subroutine TRAMS (Continued)

Attt .
A R TR Ak T T I et .

* .) . N

el \Li\.:\':\' BOACAIL I SRR S I N

™ ENTRY ALTOPT

Joap=ax \ |
- { >y
\ wp=ure1 /
160 g t 150 YES

: ICHAIN=ICHAIN=1
B IPZ(ICHAIN)=ILAST
. JPZ(ICHAIN)=JP
% Z(ILAST,JP)=2
A ILAST = IM
2 JLAST = JP
%
;; v 135
¥ Z(ILAST,JLAST)=-1
< ICHAIN=ICHAIN-1 * P(ILAST
n JP) =
3 \
;? NO
S YES
% YES
3 Ho
5 ILAST*IPZ&ICHAIN)

| JLAST=JPZ(ICHAIN)
L
:
IS
“tute Figure 3-6. Subroutine TRANS (Continued)

R AOAGAL Y WY i " »
IR SRR S K 1 41N

i Vex

ot 3 LM

LY

(.5
N NE
". ‘l'

-,
od
.
L

R

T

< A

ENTRY ALTOPT

Y

ST AR TR I YT R TN T = e
L IS R - IR T

L e N LI
P Padt Tt]
W e, . .. -

¢ 175

T

Z(IW.JUST)- ‘l Z(m.ILAST) - 1

TCHAIN=ICHAIN=1 TLAST = M

JLAST=JPZ([CHALIN) ‘ ICHAIN=ICHAIN®L

: TLAST=IPZ(TCHAIN) {PZ(ICHAIN) = IM
% IM = [LAST j;zu?mu)-ax..m

X = 1 2

figure 3-3. Subroutine TRANS [Continued)

R E T

3-44

{
P R I N R B S|

< ey
"

)

|y

S0 d]
BN SR

2 e n,
Al

XK

200

12,JS) = |

[MZ(LAST) = 12

JMZ(LAST) = JS

i1INA = MBIG

[GOOD = ¢

5t

o I sz Ao

LA e Y e

¢

it

Ay
A,

'.\.!

A¥)

W ‘
i
i
A

1

EMTRY ALTOPT

[MINASTALLOCIA M) |

Suoroutine “RANS

Slaure led.

AP Y St S L T SR
A Ny ‘ 3 \.n'i‘ “‘. ‘.“.\"\.a'\"::'

: e e e e e et
dhakand o g a0y 20 .‘.A.‘.‘"..-"‘.'.n.'.‘..':l:'-‘l

04

Land

£ RS 3,

o I

an A AWt .
e T wr

REALE A A

Py W

- e

P

e e S Y Y

v-\-"Ll
A
[LAST=(PZ(1)
JLAST=JPZ(1)
JP2eJPZ(2)
{ ' TMe [LAST
Z(1M.JM)=3 SHmJLAST
ICHAIN=!
IPZ(1)sin
NPZ(1 st
Xejp2+1 2s1 "0
1z >50

1Z[Z+1

b 1861] " 1860
IPZ(1Z) = 9
J = '
o4 .
Figure 3.5, Subroutine TRANS {Continyed)
b Tyl
&
3-46
-.".‘;". ey 1“ ' "a L . PO LY -' . Ve ® Lty v - "
Sl > AP P o™ . - ~ . ;x-:‘rﬁ‘.e_.r_.:')_'""r‘-l.r\.r"a_-. s

-"". "

.
-

3.6.2 Functions

Subroutine TRANS begins by initializing the various arrays
it will use. Separate loops are used for personnel and materiel, al-
though both perform the same basic functions. The surviving assets
(from array IS) are put into array JR by task number. The team require-
ments for team NUMTRY (array ITEAMP or ITEAMM) are put into array JD
by task number. The total items or individuals represented in these
two arrays are then accumulated to get the total number of resources,
ISUM, and the total number of demands, JSUM. Next, the cost matrix
(P) which will be used is taken from either COSTP or COSTM, as appro-
priate. An extra column is added to this matrix and a cost of MSURP
is put into every cell. This column provides the costs for assignments
against any dummy demand, that is, surplus items.

A comparison of resource and demand determines the next step.
If resources are greater than demand (ISUM>JSUM), a dummy demand equal
to this difference must be created in order to complete the transpor-
tation problem. This, however, does not ensure a feasible solution. Develop-
ing feasible solutions, when only a complete feasible solution is required,
would be very time consuming. In those cases the variable ILV is set to 1
by the calling routine and a task by task check is made to see if it is
possible to fill the demand. If any demand is found impossible to fill the vari-
able NOTEN is given a value of 1 and control is returned to the calling
routine. If a possibility of fill exists for every demand, processing
continues. If ILV was zero when the call was made this check is skipped
entirely.)

If the total demand was found to be greater than the total
resources, a dummy supply is created to balance the two. The variable
NOTEN represents the amount of dummy supply required. In this case
no feasible solution is possible and if ILV=1 control is returned to
the calling routine. If ILV=p a complete solution is desired and

2%
£y .
g
R
AL

(éiizg processing continues. A row is added to the cost (P) matrix and the
‘i.' cost in every cell is equal to MSURP, the cost for assignment of dummy
§§ resources.
¥ The allocation array (IALLO) and the arrays IR, JC, and Z

are zeroed prior to starting the transportation algorithm. The first
step of the transportation algorithm is to modify the cost matrix (P).

Step 1 - The smallest value in each column is found and sub-
tracted from each element in the column. The same procedure is followed
for each row. This results in at least one zero in every row and every
column.

Step 2 - Allocations are made through the zeros now in the
cost matrix. The value of an allocation is the minimum of the row
resources (JR) or the column demand (JO). This allocation is summed
into array IALLO and subtracted from the resource (JR) and demand (JD)
arrays.

Step 2A - After all possible allocations have been made a
check of all demands is made. If the demand has been satisfied (JD
(JA)=0), the column is flagged (coveréd) by a 1 in the appropriate ele-
ment of array JC. If all demands are zero, a solution has been found
';g : and control returns to the calling routine. I[f unsatisfied demands
- ‘ remain, processing gues to Step 3.

Step 3 - Find an uncovered zero in the P array. This is a
zero whose column flag (cover) in array JC is equal to zero and whose
row flag (cover) in array IR is also equal to zero. The Z array is
used for flagging the zeros found in the P array. Flags in the Z
array then indicate possibilities for optimal allocations of resources.
The search starts by finding uncovered columns, JC()=). When an un-
covered zero is found, it is flagged with a 2 in the Z array. If the

1‘4
i
s L
k!
o
-
K

P P
e e me g

3-48

SRR WA RN Lag e e N vt
IR SIS AL M | \l.\l‘& LLER R NN, - A l"‘-(v

z

;d

t:i (‘.:}”\ « o N .

WA, row of that Ps0 has resources remaining its Z flag is changed to 3 and
‘ii’ processing goes to Step 4. If the row does not have resources the row

is flagged (covered) by a 1 in the appropriate element of array IR.
This row is then checked for other elements of P which equal zero, lie
in a column which has been previously covered, and through which a pre-
vious allocation has been made (the corresponding element of the IALLO
array has a value greater than zero). This cell is then flagged with
f\ a1l in the Z array and its column cover, JC(), is zeroed. Step 3 is

%; repeated until an uncovered zero (P=0) is located with remaining row
resources, thus directing processing to Step 4; or until all P=0 ele-
ments are covered, either row or column or both, and processing is

iR

) .

] directed to Step 5.

B

- Step 4 - An uncovered zero element in the P array has been
ﬁﬁ found with resources remaining. - (If resources remain there must be a
g; demand somewhere.) If the column of this zero element has a demand

the allocation is made. If the demand of this column has been pre-
viously satisfied there will be a zero in this column which is flagged

&

?ﬁ 1 in the Z array. Further, the row of that zero will contain a P=0

g% element with an associated Z flag equal to 2. (These elements are re-

B ferred to as plus (Z=2) and minus (Z=1) zeros by Munkres.) The columns
o and rows are searched alternatively for these plus and minus zeros and
éé their locations are stored by count in the arrays IMZ (ICNTM), row in-

J% dices, and JMZ (ICNTM), column indices for minus zeros; and in arrays

IPZ(ICNTP), row indices and JPZ(ICNTP), column indices of the plus
zeros. Any prior allocations to the minus zero cells are stored in
array IBl, again by count. This results in a chain of plus and minus
zeros which guide an optimal reallocation. This chain will always
have an odd number of elements and the last will always be a P=0 ele-
ment flageed 2 (plus) in the Z array. The minimum value is found of
the: resources in the row of the Z=3 element, the demand of the last
plus zero, or the previous allocations made through the minus zeros.
This is the maximum possible which can be real]ocated,'variable JQ.

»s
‘y’} i u
S S

XX

o

AT Ak i

The reallocation is accomplished by subtracting this amount from pre-
vious allocations at the minus zero cells and adding to the allocations

. ¥
K

- DR
%iﬁ’

of the plus zero cells. The associated resource and demand elements
are adjusted accordingly. After the reallocation has been made the
remaining resources and demands are each summed and checked against
each other. If these totals are not equal an error STOP is made. If
demands are equal to zero, a solution has been found and control is
returned to the caliing routine. I[f demands remain unsatisfied all
flags and cover arrays are zeroed and processing returns to Step 2A.

Step 5 - Step 5 is entered from Step 3 when all zeros in
the P array are found to be covered. The P array is searched to find
the minimum uncovered (IR()=0 and JC()=0) element. This value is then
subtracted from all uncovered elements in the P array and added to all

twice covered (IR()=1 and JC()=1) elements. Processing then returns
to Step 3.

Entry ALTOPT - The purpose of this section of subroutine
TRANS is to Tocate any alternate optimal solutions. Possibilities
for alternate allocations are found in a manner quite similar to the
reallocation process in Step 4, above. An effort has been made in
ALTOPT to reduce the scope of the search required. In order to form
the chain of plus and minus zeros there must be at least two zeros in
any row or column that is included in the solution. The first step
in ALTOPT is to examine each row and then each column and cover by a
1 in the appropriate element of arrays IR or JC those that do not have
at least two zero elements in the P array. The uncovered rows and
columns are then counted and if either is less than two, no alternate
solution is possible and a return is made.

[f the possibility of an alternate solution does exist the
original solution, array IALLO, is written to the file ALTAPE for
reference. The search is then started for an uncovered allocation with
an original cost equal to or greater than MSURP. This qualification
is used to identify "choke points." Alternate solutions involving

-
&
L4
[
1]
v
r
[4
)
’
‘
.
.
«
.
f
»
»
3
.
’
"
.
»
.
.
»
’
)
L
r
.
3
3
:
.
.
2
.
.
[l

h

18R

PR L

changes in these allocations are the primary interest and therefore

the search is limited to them. This allocation is the start point for
the reallocation chain. Its row and column indices are filed in arrays
IPZ and JPZ and the associated element in array Z is set to 3.

DA ARy

Next, the row of this allocation is searched for an uncovered
zero element of array P. The Z array is checked for a zero value to

Ne

fz ensure that this cell is not already included in the chain. The loca-
.% tion is stored and Z is set at 2. If this is the column of the start

4 element the chain is complete, otherwise proceed to the next step.

‘i If no unused P=0 is found, the Z of the previous element is set at -1
£ to indicate that no chain can be formed from it. The chain count is

}% decreased to provide the location of the previous element in the chain.
. If this decreases the chain count to zero the process is started over.
;g The next step is to search the column of the last P=0 for

an uncovered (IR()=0) allocation with P and Z elements also equal zero.
"If none is found the chain count is decreased, the Z of the previous
element is set to -1, and processing goes to the row search or back to
start. When an allocation is found the location is stored, the Z of
this element is set to 1, and processing returns to the previous step
to search the row of this element for a P=0.

The chain is complete when a zero P element in the column of
the original Z=3 allocation is found. The Z for this cell is then
") changed from 3 to 1. The minimum allocation to the cells flagged by
I I=1 is determined and the reallocation of this amount is made. A
fﬁ check is also made of the cost of each of these allocations, if the cost
of every allocation is MBIG then only the fake assignment of existing
assets is being rearranged and the solution is of no interest. Reallo-
cation is made by subtracting this value from allocations previously
A made to those cells designated by Z=1 and by adding to those cells
designated Z=2.

)
7
4
-
‘L
kY

3-51

Sy N I P o S T SO S - . RPCIRIOT e . - — e R
et '1?"1 N <. W ’ ..“("'-‘ ~" ’u' LSRN ‘- SN A N .h“.‘\\'h“.q ‘.-\‘-" A YK S .‘). "-;‘h\.\.‘

!

ANt va L

[

17,0,

e

Wl Yol T e

= g AT Y

22t ad sy

A

Q)‘»‘:;.

.

AT . i T A A LT AT AT T AT T A e e
PR RSN v WL LN e A DA SN AR R

The next step is to determine if this is a unique alternate
solution or a dupiicate of a previously found solution. The variable
LAST is used to count solutions and is initialized to 1 on entry to
ALTOPT. If LAST=1l after a reallocation has been made, the solution
must be unique and is simply written to the file ALTAPE. In all other
cases the solution is compared, allocation for allocation, with each
previous solution in the file ALTAPE. If all allocations are equal
to any other solution this solution is discarded and search process
is started over. If the solution is unique it is written to ALTAPE,
LAST is incremented, and the variable MULTF is checked against the
number of solutions found. If MULTF=1, the process continues until
each solution found has been searched for alternates. If MULTF>1, the
process stops when that number of solutions has been found or the possi-
bilities have been exhausted. Each solution found is searched in turn
for alternates. The variable LL is the indicator of which solution
is to be read from the file ALTAPE to start each search.

3.6.3 COMMON BLOCKS

OLY3
GENERL
KTR1
KTR2
PD2
PRNTIT
WK1
WK2

3.7 SUBROUTINE CAPT (MP, MF, NUMTRY)
3.7.1 General

Subroutine CAPT (Figure 3-7) provides control for the calcu-
lation of the capability (fraction of teams found) at each time of
interest. Calculations are made by ICAP (initial, zero time, capa-
bility), WHEN (time when transfers are complete), and RCAP (capability
at each time after zero). Capability calculations are made at each

3-52

¢

of the input times and at zero time (before any transfers), at minimum
time (immediately after transfers start), and at infinite time (all

égg possible transfers made). The argument MP designates personnel (1)
33y or materiel (2), MF identifies the mission number, and NUMTRY is the
§§§ number of teams which can be formed as determined by MAXT.

CAPT initializes JMIN to zero and JMAX to the number of
teams built plus one, prior to calling ICAP. _If no teams could be
¥ constructed (NUMTRY=0) the initial as well as all other capabilities
a are zeroed and no subroutine calls are made. JMIN and JMAX are used
by ICAP for a binary (two number) search to find the team which can be
formed using survivors in their own job only. This number of teams is
used to calculate TOTCAP (1, MF, MP), the zero time capability.

CAPT then calls subroutine WHEN for the calculation of the
time when each transfgr will be completed and ready for operation.
The array RETURN is constructed by subroutine WHEN and contains, for
each time point, the number of each task available for team completion.

The array RETURN is then used by'RCAP where the team require-
ments are matched to the available assets at each time. The capability,
TOTCAP, is calculated by RCAP for all times other than zero.

3.7.2 COMMON BLOCKS

GENERL
PD2
STATG
SURV

B
A ASON
'.i,

' -ﬂ

o DL s s e et i i et e gt I R R ER 1 P R SN P S AL SACR AL AR CRE AR G SR NG A AR S
- - - - 5 - B " - - - = - - -
?
.

'\i.‘:

A ‘-S;\‘.

P,

2

N

L3

' CAPT (MP ,MF,NUMTRY)

NTASK » NTASKS(MP)
JMIN=0

e

?
N0/ MRy \ _YES

L m-'imﬂ] \‘V

YES

AL

it e
]

MP>1

b
[CALL TCAP(JMIN.JWAX, ITEANP ,NTASK,4F ,MUMTRY ,ISOURC) |

A

[CALL TcAP (JMIN,JMAX,ITERMM.NTASK.MF . MUMTRY,ISOURC |

: | JMIN = NUMTRY

h I

TOTCAP(1.MF ,4P) = FLOAT(JMIN)/FLOAT(NTEAMS)
NT3 « NTIMES +3
; YES CALL WHEN(MP, RETURN)
7‘;: s
1=2
I YR
t=t+1 /
25
3

; [roreae (1.9F.9)=0 | fCALL RCAP(NUMTRY , [TEAMP ,RETURN,NTASK XT3, TOTCAP ,MF 4P }

RETURN e o X

CAP(NUMTRY , ZTEAMM, RETURN,, NTASK,NT3, TOTCAP MF . !
|

r &1

Figure 3-7. Subroutine CAPT

‘.:; 3-54

W P It A
LSRN Wi AN IS A I

LI RPRIRVELER S e P oS Ta VL 1%
P T OO G NN N SN GTA N,

% h T AT m T e TaS et e e et ve ot aNaSat et e e,
' _. (e \ﬁ\.‘-. AR ,...-_'.. s o ST e

%} (i‘ﬁé 3.8 SUBROUTINE ICAP (JMIN, JMAX, ITEAM, NTASK, MF, MAX, IS)
3.8.1 General

Subroutine ICAP (Figure 3-8) is called by CAPT to find the
team which can be constructed using survivors in their original job
only, that is before any transfers have been considered. The argu-
ments JMIN and JMAX prdvide the initial bounds for the binary search,
of zero and one more than the maximum number of teams built (NUMTRY + 1).
ITEAM 'is a dummy for the set of team requirements, ITEAMP or ITEAMM,
being passed by CAPT. NTASK is the number of task lines being con-
sidered, MF is the mission number, MAX is the maximum team possible,
and IS is the array of survivors for this iteration.

2

)
22

b PN . e
J{t{&‘ L
s R O

A DA

Subroutine ICAP compares the survivors in each task line with
* the requirements of a particular team number. I[f any task line has
fewer survivors than the requirement, then that team cannot be formed.
The first try is made using the team number mid-way between zero and
NUMTRY+1. If a team cannot be completed then JMAX is set at that team
number. When a team is successfully completed JMIN is set to that team

number. In either case the process is repeated for the team number
mid-way between JMIN and JMAX. The process stops if JMAX is reduced

% to one, JMIN is increased to MAX, or the difference between JMIN and

P JMAX is one. In any of these cases, except zero, JMIN is the number of
= the last successful team and is passed back to CAPT.

RS

gg - 3.8.2 COMMON_BLOCKS

R

Subroutine ICAP contains no common blocks.

¢
¥ '?33‘
B

3-55

it

¥

ICAP(JMIN ,JMAX , ITEAM,NTASK ,MF ,{AX,IS)

R O R
oYV atats¥

-

5.

10

.y

NUMTM =
(JIMIN+IMAX)/2

i,

YES

[> NTASK?

10,

30

,m JMAX = NUMTM . JMIN = NUMTM
AN T

YESy! RETURN RETURN |2

O A LA S
s A

RN 3

NO Mo

YES

a
; YES 0o ReTURN RETURN |0

= Figure 3-8. Subroutine ICAP

X

N N

- ® I

“l} Jo e 1 DR res 'n"\‘.': '_:,~ LS

‘:1

.,l. o

S g;ﬁk& 3.9 SUBROUTINE WHEN (MP, RTN)

%;g . 3.9.1 General

2

o Subroutine WHEN (Figure 3-9) determines the availability
time for all assignments made by subroutine TRANS. The argument MP

oy defines for the subroutine either personnel (1) or materiel (2). RTN

is the array, to be constructed by the subroutine, which will contain
the number of individuals or items available at each time for each

et LE)

task. The time of availability is determined by summing all the times

s
[2t

associated with a particular transfer. These include transfer time,
delay (commander's decision) time, and for materiel the repair time
when appropriate. An option, IMEANT, is available to use the mean
times as input (IMEANT=1) or to use an exponential distribution for
each time (IMEANT=Q@). This distribution is calculated by drawing a
random number, RANDOM, and getting a time, t, from the equation;
t=t 1n (RANDOM), where t is the input mean time.

RS

v,
T T

L et Tt
-
LY

Subroutine WHEN contains separate loops for personnel and
materiel which perform the same basic functions. The first step is to
find all allocations with zero cost which have been made to their pri-
mary position (resource task number equals demand task number). These
allocations are then put into the RTN array by task number for each
time of interest, except zero time. (Zero time calculations are made
by subroutine ICAP considering survivors in their primary duty, only.)
These allocations are the only ones stored in array RTN (1, Task No.)
and subsequently considered for the "minimum time" team build. The
: assumption is that even zero time transfers to another position result
= in some disruption of the team.

Y
@g
5{j

5
Ok

oA

i The second step is to again examine the diagonal elements
£

o of the allocation matrix, this time for those that have some cost

associated. This step provides the capability to represent delays

TR ol g Loak vah G Ete LAMLAML yi St Sl Nt aui S AT it A e s S AP SR et it bt e

AP
" ,—\

WHEN (MP,RTN)

S NT2 = NTIMES + 2
@ NTASK=NTASKS (MP) .
R NTASK3=NTASK*3 TIMEST(I)=TIMES(I)*60.

Js=l
J >NTASK ?
Jad+l

% YES

RTN(I,J)=0

R ’%‘m
A

P

e

‘_H'\«‘?if-‘, E

rha
s

1

o A

[RTN(T,d)=RTN(T,J)+IALLO(J) |

y

p

Figure 3-9. Subroutine WHEW

3-58

LR P AR T TN e Lt
A S CORCRILN AT S A S R T R .\l
SN RIS -"-} LA RECRINERES CRON T

~~~~~

Ly - o e AT T PP I N I I N I P ] .
SRRy Sy (AR SRS .- h.q '.J,.‘_},\._




£OSTP(J,d))

[A=IALLO(J,J)
FTs -FLOAT(TRANPXJ,J))

W2

KeK+1 RANDOM = BARN(1)
e TIMRET = FT * ALOG(RANDOM)

[amomzyerminrz, o] O L |

122
[>HT2-1 ?
=[+]

[ 3

YES

NO
[RTN(E,0)=RTN(T,d)+1 |

Figure 3-9. Subroutine WHEN (Continued)




A‘-;a"~<

Rl LT

R n e By

b

F

)
3
g

N

5, “1',

~

iy
AR NG

v

WHEN

FP=FLOAT(PERDLY(J))

R T LT T T Ty
VBT

HO
4180 NO MO
JsL IALLO(J,L)
<0
A = [ALLO(J,L)
YES \ Kkl RANDOM = BARN(1)
L‘ ¥ 160 |TIMRET=FT * ALOG(RANOOM)
RETURN
@(m‘u.m(m’u oy RANDOM = SARM(1)
A
_u L | (_TIMRET = TIRET ] R e T -
YES /r--_; NO
1 >NT2.1?
I=+1
155
7

[Q—T;‘I(I 1'e

afu e |

Ay W L8 e
«‘i"‘.‘»;“-'. y

Figure 3-9, Subroutine WHEN (Continued)

2.4n

-

AT BRI IVLE] - LTSI I T N I L B
s B SN SN




WHEN

IA » IALLO(J.J)
FT = -FLOAT(TRANM(J,J))

YES

g T o o e e e e e A e N e L L A S
L A A R T S N R N L SIL
SNBSS SO LA R A AL DI

RANDOM = BARN(1)
TIMRET =

| RTN(NT2,d)=RTN(NT2,)+1 | NO
4

1 =2
YES {1 >nNT2-1?
[e1+1

b 210

[ RTN (I,J)=RTN(I,J)+1 |

Figure 3-9. Subroutine WHEW (Cont'd) L—_J

3-61




R W

LA

%, Y

v

e

Lt

L i

A ~ 3
___________

WHEN

S R SN

LA

NTASKGsNTASK*2

JG=MOD(J-1,NTASK) + 1
FM=FLOAT (MATOLY(JG))

FR=FLOAT(REPTIM(JG,1) |

Jd>
NTASKG

NO YES

FR=FLOAT (REPTIM(JG,2) |
]

!
TASIALLO(J,L)
FT= -FLOAT(TRANM(JG,L))
380
KETURN
| Figure 3-9. Subroutine WHEN (Ccntinued)
362

P P A S AT

R R R TR I R R R R




T B o " T a "% - —

J b - LV NN ¥ Tavuvas WLV, CTILIITIIISAEIT ~.\'_3.".~.-.'i.-'. TITRTETRTEIATETRT AT
lz

B

52

%

¥

-

P WHEN
oy Wl
,'; A

RANDOM=BARN(1

| [ rimreT=FT + aLOG(RANDOM) |
B A ?
YES NO YES
IMEANT RAN N IMEANT
>0 S
NO
-
TIMRET = -FT] TIMRET = TIMRET TIMRET =
~FM*ALOG( RANDOM) TIMRET+FM
- !
300
Figure 3-9. Subroutine WHEN (Continued)

3-63

LRt ECER- arpeic) T gy - I LI T LY
RIS K s ok

R

? i'».. . ¥y 3% 2%, i u.“u 1' y o o o



ﬂ H ' R T e T T o o o I, P o T

;S HHEN

“:&

\i

bS]

v "-&%ﬁ"x .

% TIMRET=FT * ALOG(RANDOM)

| | Na TMEANT YES

4 I >0 —l

: RANDOM=BARN(1) TIMRET= -FT
A

? H
Noj\ YES ‘
TMEANT |

‘- AN ¥
] FIMRET=TIMRET-FM * ALOG(RANDOM) TIMRET=TIMRET+FM
# T 245 B!
‘- RANDQM=BARN(1) ‘

JN

NO YES
. THMEANT
r >9 —‘
TMRET=TIMRET-FR * ALOG({RANDOM) TIMRET=TIMRET+FR

3

| __ YES NO
| RTN(NT2,L)=RTN(NT2,L)+1 Il=1-1
355
‘ -




S

for individuals or items filling their own jobs. This may be appro-
priate in some applications. The only time considered here is trans-
fer time. Commander's decision delay time is not applied to any assign-
ment to that item's primary function. The transfer time is either
modified by the exponential or used directly. Times are drawn for each
individual item of the allocation and each item is added to the RTN
array for the appropriate, and all subsequent, times. If the return
time, TIMRET, is greater than the greatest time of interest the item

is added to the RTN array for "infinite time."

Finally, all other (non-diagonal) allocations are examined.
The same steps as above are followed with all appropriate times being
considered for each individual of an allocation. The resulting array
RTN is returned to CAPT for subsequent use by subroutine RCAP.

3.9.2 COMMON BLOCKS

OLYL
OLY2
DLY3
GENERL
SEED
WK1

3.10 SUBROUTINE RCAP (MAX, ITEAM, RTN, NTASK, NT3, TOT, MF, MP)

3.10.1 General

Subroutine RCAP (Figure 3-10) calculates the capability,
fraction of total teams formed, for personnel or materiel at each of
the times of interest, except zero time. (Capability at zero time is
calculated by subroutine ICAP.) This is accomplished by comparing
the available assets at each time, given in array RTN, to the require-
ments for the teams. When a requirement is found that exceeds the
available assets, that team cannot be completed. The previous team
number is used to calculate the fraction of total teams available at




- S L s W
oy

e o T

- A .

e
Gk

3
¥

L2

W
W,
—‘\

ab-
IR

P
Lt wto'{' e,

i, !t,?

Pl A A AR M A

RCAP(MAX, ITEAM,RTN,NTASK,NT3,TOT ,MF . MP)

® NUMTM + 1 -

YES

>MAX?

¥o

i J>NTASK?

G

[ )
3

33

TOT(I ,4F,¥P) =
FLOAT({NUMTM)/
FLOAT(NTEAMS )

v A“

Figure 3-10. Subroutine RCAP

3-66

e (T aa™ev -.'-’ LN DAY T SR W' d Tt " mt "
W TR TSR S8 SRR AN ._\n\(ﬂ- L RN h

..‘ 1 - - -
A ‘.".\‘. o ;

PR NN




R e

p 6

A%

that time. The process is repeated for each time of interest and the
resulting capabilities are stored in array TOT by time slice, mission,
and personnel or materiel designation.

“wP%

u The argument MAX is the maximum number of teams which can be

A constructed. ITEAM is a dummy array which contains the personnel or

materiel team requirements, as appropriate. RTN is the array by time

slice of available assets established by subroutine WHEN. NTASK is

the appropriate number of task lines, personnel or materiel. NT3 is

the number of times input plus three. TOT is the array of capabilities

which are calculated by the subroutine. MF is the mission number and

MP designates personnel (1) or materiel (2). '

A AT

3.10.2 COMMON_BLOCKS

GENERL
P> Q 3.11  SUBROUTINE ASN (MP, MF, NUMTRY)
3.11.1 General

Subroutine ASN (Figure 3-11) files the assignment matrix
information for each iteration in DEFINE FILE 22. This subroutine is
called by MAIN if the option flag ASSIGN is greater than zero. The
calling arguments identify personnel (MP=1) or materiel (MP=2), the
mission number (MF), and the number of the team (NUMIRY) which was
completed. ’

Subroutine ASN first converts the integer values of the
allocations matrix (IALLO) to real numbers and stores them in array
ALLO. The DEFINE FILE record number, KOUNT, and record length, RLGTH,
: are then calculated. Each record is defined by team number, mission
%f, ’ number, and either personnel or materiel. (See paragraph 3.11.3 below
g for a discussion of the DEFINE FILE structure.) The appropriate record

k. 3-67

'>_- J'f" .1.~.-( . - ..—‘.‘--.... -‘..f-'-f.-'.-':. R "o et et TR AN
6 VA T A L O L N Rt T e Y



- e Ve 3L ¢ v U T ML Tal% LN NN T 4,

-
% '<§§j§ is then read into array WORK and the data for this iteration is summed
‘ ‘ﬁiﬁv with any previously stored data. WORK (1) is then incremented as a
g count of the number of iterations represented by the data. The array
1 WORK is then written back into the appropriate DEFINE FILE record and
1 control is returned to MAIN. 3
; 3.11.2  COMMON BLOCKS {
: .
: GENERL
WK1
WK2
3.11.3 DEFINE FILE 22
(1) Records are identified by team number, mission number,
and type (personnel or materiel). These records are filed in order as
follows: personnel team number from 1 to NTEAMS, mission 1, followed
P by materiel teams from 1 to NTEAMS, mission 1. Each additional mission
7 follows in the same order.
WD

(2) Data in each record is accumulated for all iterations
that team is constructed. The data in each record is filed as follows:

B ] Element 1: The number of iterations represented.

p 0 Element 2: Redundant, equal to 1.

i ° Elements 3-(NTASK+3): The assignments made of re-
sources in task #1 to the demands of each task or
to surplus.

L Elements (NTASK+4)-(2xNTASK+5) and subsequent
strings of length NTASK+l are the assignment data
for each task, 2 thru NTASK, to fill any other
task or to surplus. For materiel the array is
further extended for the assignment data of ligh-
and then moderately damaged items.

3-68

PUETR T AT 00y vy e R i R
T AR bl o F N . X 4

R R T e F A T L M A N




'Y " P N o 2 B - e — —— -y —
LG DA RN Ak S LA e RS e e R o ol o Rt o L ARG S RS, et gt e AR A AP S R AT A S T Rt i ey ."-‘_u‘:i

3 ASN(MP ,MF ,NUMTRY)
s

¥ ?
NO NUMTRY SYES —»  RETURN

PN
II = 22

NTASK = NTASKS(MP)
NTASK1 = NTASK +1

TR

o

YES ? NO
MP>1

h
"n ‘3\)
3
ARY
&

NTASK = NTASK x 3

\ K=K+1 /
A55
L=1
YES A A\ NO
L> NTASK1?
\ L=L+ 14/
A
L >
[ ALLO(K,L)=FLOAT(TALLO(K,L))
| @ Figure 3-11. SUBROUTINE ASN
3-69

L



RLGTH=NTASK*(NTASKS(MP)+1)+2
KOUNT=(NTEAMS*2)*(MF-1)

YES NO

KOUNT=KOUNT+NTEAMS

r

KOUNT=KOUNT+NUMTRY
READ(II'KOUNT)(WORK(L) L=1, RLGTH)

J=2
!

ves K=l \

———  K>NTASK NO
\kK=k+1 / y
0/ L=1 "\
Y Tontaskr WO
L = L + 1 J = J + 1

l 70 WORK(J)=WORK(J )+ALLO(K,L)

WORK(1)=WORK(1) + 1.
WORK(2) = WORK(1)
WRITE(II'KOUNT)(WORK(L) L=1, RLGTH)

l

RETURN

Figure 3-11. Subroutine ASN (Continued)




N

%f

&N

L.

f}% 53;§4 3.12 SUBROUTINE CHOKE (MP, MF, NUMTRY)

b NS

X 3.12.11 General

&

?‘ Subroutine CHOKE (Figure 3-12) calls subroutine TRANS to

'l; solve the transportation problem given the requirements of the next

A higher team number. This identifies those individuals or items which
%f ‘ are most critical to the reconstitution of higher capability. Sub-

Ed routine CHOKE then stores this data in DEFINE FILE 21. Records are

- identified by team and mission number’ for personnel or materiel. Data
;5' ~~F in each record consists of the number (f iterations, the number of

i%' alternate solutions found (when that option is exercised), and the

bt needs and surplus data developed from the allocation matrix which

o has been completed by subroutine TRANS. The detailed structure of the
o DEFINE FILE is given in paragraph 3.12.3 below.

2 -

=y Subroutine CHOKE is called by MAIN if the input option flag,

SCHOKE, is greater than 0. The call is made each damage replication,
each mission for both personnel and materiel. The calling arguments

identify personnel or materiel (MP), the mission number (MF), and the
number of the largest team which could be constructed from the avail-
able assets (NUMTRY).

4
w
"‘
.‘\AJ

"ll*'-:‘:an-"‘.‘ 0T

o EL

Within the subroutine, the variable IFLG is used to_indicate
if all teams attempted were constructed (IFLG=l). In that case there
will be no shortage and only data of surplus items is calculated. The
variable MULTF is an input option flag and if greater than zero a
call will be made to ENTRY ALTOPT, in subroutine TRANS, to attempt to
find alternate optimal solutions.

s

=X

w54

N

S P

When subroutine TRANS solves the transportation problem, in
this case known to be infeasible, it will use either dummy supply or
infeasible assignments with a very large cost. In either case the

. e

2%

o AT
¢
g LA,

o .
: 2.71
A

AT " :
R I RS 3 54

e e e e e N
e . .

S e et e hd - .
.o , et RIS
ISP S S U PR T Y DR, Y _',v-gh.‘{-“h-.'_..‘-hi‘-'J

VOV L R o ‘\' AT YA VL . SR




X ;j;

il AtV
i i
.-

A
c’ﬁ‘
g

‘I;'

-

s
z"é.‘ﬂ'ﬁ

~—a

& vt S

5

AR

& »s
e

e LA et
P A
kv 2L,

o R REE A

s e

2,

assignment is easily identified and the demand filled by that assign-
ment is critical to, "chokes", the construction of that team.

The variable NOTEN, calculated in TRANS, is the number of
dummy supply items required to complete the transportation problem.

‘If NOTEN is zero then no dummy supply was used and all "choke" assign-

ments were made using assets on hand. These assignments are identified
by a cost of MBIG, a large value which is calculated by subroutine
COSTMM. Any assignment which has been made in this way identifies a
need and is stored in array AVEN by task number. Since this assign-
ment is, in fact, not real the item that was assigned is actually sur-
plus and is therefore also added into the surplus array, AVES, by task
number. In the case of materiel this array is extended for each task's
light and moderate maintenance categories.

In the case where NOTEN has some value all needs are filled
by the assignment of dummy supply. It is therefore only necessary to
examine the dummy supply row (NTASK+l or for materiel 3xNTASK+l) for
"choke" assignments.

Both surplus (AVES) and need (AVEN) arrays are constructed.
The WORK array is read from the appropriate record in the DEFINE FILE
and data from this iteration is accumulated into array WORK. This
array is then written to the appropriate DEFINE FILE record for later
use. (See paragraph 3.12.3 for DEFINE FILE structure.)

When alternate optimal solutions are found the average value
for both surplus and "choke" assignments are calculated on each iter-
ation. Additionally, the minimum and maximum value of each for all the
solutions found for a particular team are calculated.

------




3.12.2 COMMON BLOCKS

. DLY3
X GENERL
: KTR1
X KTR2
% SURV
WK1
¥ wkz
¥ 3.12.3  DEFINE FILE 21
o
£

(1) Records are identified by team number, mission number,
and by type (personnel or materiel). The records are filed in the
following order: personnel teams, from 1 to NTEAMS+1l, followed by
materiel teams, from 1 to NTEAMS+l. This sequence is repeated for
each mission. The additional (+1) team count provides space for the
case when all teams are constructed and the “"choke" data represents
the surpluses after the last team is built.

R
3 i ok s

e "“I s

(2) Each record is an accumulation of data for all iter-

P ations which "choke" on that team number. Data is stored in each
% record as follows:
" ° Element 1: The number of iterations represented.
3 . Element 2: The total number of solutions found. If
5 multiple: optimal solutions are not examined or not
] found this value will be equal to Element 1.
(a) No alternate optimal solutions considered:

o (Note: NTASK is the number of personnel tasks
¢§ or 3 times the number of materiel tasks as
ﬁ appropriate)
ks o Elements 3 -(NTASK+2): Needs for each task
"~ o Elements (NTASK+3)-(2NTASK+2): Square of the
% needs for each task.
\ o Elements (2NTASK+3)-(3NTASK+2): Surpluses for
9 each task.
v o Elements (3xNTASK+3)-(4xNTASK+2): Square of the
L surplus for each task. ,

e The record for maximum teams +l1 has data only
p &g\j for surpluses. In that case the surplus data
N

3-73




I 'l'l‘.
Dy i bt ki Rt

" CHOKE (NP JME ,NUMTRY)

IFLG = 0
II=21
YES NO NUM=NUMTRY+1
N YE
IFLG=1 0 >
NUM=NUM-1
CALL TRANS(MP,NUM,MF,ISOURC,0)
!
NTASK = NTASKS(MP)
NTASK3 = NTASK
J=1
e J =1 ” YES J>NTASK7
oY T ISNTASK? N J=d+1
NJ=d+1 / t20 | aven)=0.
25 AVES(J)=0.
AVES§J+NTASK)'0.
AVES (J+2*NTASK)=0,

NTASK3=NTASK3 * 3

Figure 3-12.

Subroutine CHOKE

S 7% NI RIEN LN
PR O NI O A RN ORI




L3 i e
LR "al

et el
RN

A S

s Ny
A

e Y 3
o

W %
= WPy

L Y

P

e N

v -
...............

CHOKE

' - - e

KOUNT= (NTEAMS+1)*2*(MF-1)

NO
YES _

KOUNT=KOUNT+NTEAMS+1

*l

KOUNT=KOUNT+NUM

~

.
¥
'y

g ”

KOUNT=KOUNT+1

?
| IFLG y”o
YES

Figure 3-12. 3ubroutine CHOXE (Contirued)

3-75




.

Pl R IR B B i

LA

PR VEYYYIYX

(panuijuo)) INoHD dupInosgng

M _.._ 0VI ) LvO4+(1
CI)OTVIVI)LIVO1d+

{

SIAV=(1)SIAV
CINIAV=(C)NIAY

"21-¢ 34nbiy

=

st _}.k:.wh )&

:%@u.%uﬂifﬂfxm s ALt sl

SEYSVINTOTIVITL

+(1)N3AV=(1)N3AV

1 T4+ENSVIN)

0>

(VAR )

( (TeXSVIN1)OTWVI)IVONS
+(1)S3Av=(1)S3Av

Sml.l.

\—+_

/

N 9_2:.\_
55 ¢ \ \
T+1=1\
0> NSVIN<I
[[1+01=1 \
i\ EASVINST )esp
\L 1 /] s

ok
1

[ 1

+ 0=

ASVINSC

ON

PR i

1=

N0

T RIS

3-76




v A - gliy i, - o Tt ol e b it Rl il 4T ST e T NT AT e TR T W e T e T e T e T W VLN oV E I
¥
Y
N CHOKE
CALL ALTOPT(Mp)
REWIND ALTAPE
. 1
o
I >NTASK
\N1=1+1/ MINN( I )=MSURP
y MAXN(I)=0
: 105
: ISNTASG y
; 110 MINS(1)=MSURP
v MAXS(I)=0
'Q

|

| I

| araskisnTAsk+l |
4
. [1=1
— B S sT 0 3
. \[=l+1

‘ READ ALTAPE((IALLO(J,K),K=1,NTASK1),Je1,N3)
i 160 ¥ NO
- | ASURP(J) = 0 |
¢ !
5 ‘ 0 (axnmasOE
¥
“ ¢3 | ANEED(J) = 9 |

gg Figure 3-12. Subroutine CHOKE (Continued)
3-77




(PO J103) NI 3L IN0IYNG

*21-g a.mby §

1

L 24

MMGSEB:\. 1)SIAV)+(ENSVING L4241 )HUOM=(ENSYINLL 4241
1)sxwW)1vos* “Qmﬁz.??_ )XYOM) IXVWV={EXSYLINGG+24 1
1SV1)1¥014/(1 ) SIAVH(EASVINSS+2+] )NUON={ EASVINLG=2+1

(( :m.:z:s.:.MQQ:..!?_ZS:EE" ENSVINSD+2+4]

b
b
A
b

(1)SNINW) 1v0 1= EXSYINeP+24 1 )NIOM( [=1S41) 31

Ny 3

HI9W" T=1° (1)XYOR( LNNOX. 11) IL1UN

ON

l=1 /
CASVIN< ]

5Ll

X

_-.\S» 1

. f

1

rAyy

(

(1)NXVR) 1VO 13" (EXSYINSZ+2+1 )AYOM) TXVHV={ ENSVINsZ+2+]

AHOM

«((1SV1)AVO 13/ (1)S3AV) +(EASYINGE 42+ ) NUON=(ENSYANSE 4241 )%
(({1)SXVW) LVO 14" (ENSVINSZ+Z+1 )IUON) IXVWV=(EXSVINGZ+Z+I )X

ASY)AVOTS/(1)NIAV) + {EASVINGE+24] vxs:umnxmﬁzcn&: mg

:2:-5:\M T)N3AVA(C:. SVANS2+1 ) NUOM=(EXSVINZ ¢ )
(CNNIN)IVO T3 (241 ) XUORK) INENV=( 241 )N
((1)NNIW) LVO13=(2+1 ) nyOM(T=2S31) 41

({1)SNIK) VO 3=

HON
HON (1SV)AV013/( 1)SIAVA (EASVINGZ+ I ) NON=(EXSVINGZ+1
(((1)SNIH) V0TS  (2¢1)0

yOR) INIWY=(2+1 )%
{Ze1)00M( E=1S41) 41

)

1+)=]
ASVIN <
=1

SIA

o<
931

4] =

£ xm<“zA

(1)00H = 1S31

(1SVI) V0TS + (Z2)NH0M = (2)nu0M
T+ (1)30m = (1)9908

A9 U= ° (1) XU0N( 1Nn0X, 11)OVIY

e
N L 2e/(z-msw)-mow |
O ¥

N SIA

| 2e2ebubusviN=19W |

.- g

Sk

3-78




TETETAY 7

I— Rt i S R e A 0 e DDA 2 BACTS M WA SRS LA SN A AT A
TN 44 d - WV, ¢.i.=.'~]?.7.-..3‘v..-.‘.'- A R L) - -«

¥
! and .

130 COSTP(K,.J

ves /3 s 1 NO

- J >NTASK3
g J = I+l

138 \

YES A1aLLo(s -
» NTASK1} [m(a).mem(s)’mmmmm.a,\1
‘ : <9
10 §
o ASURP(J )sASURP(J) ¢
SFLOAT( TALLO(NTASKL)) | HEED(J) *ANEED (J)+FLOAT( IALLO(X.J))
ASURP (X )=ASURP{ ) +FLOAT( IALLO(X,J)}
.

AVEN(J )=AVEN(J)+ANEED(J)
MINN(J ) *MINO(MINN(J) , IFIX(ANEED(J)))
MAXN(J ) =MAXO(MAXN(J) . [FTX{ANEED(J)))

)

AVES(J)=AVES{ J)*ASURP(J)
nmsg.x;-ﬂmo 1S J‘.:m Asuapé.:))r
1AXS {J fsmAXO(MAXS(J ] , IFTX (ASURP(J}

Figure 3-12. Suoroutine CHOKE (Centinued!




(ponuyIN0D) AN GUEINOIQNS  “2-€ B4nb1L g

NunL3Y

N..M_ SIAVH(ENSVINSE+2+1 )NUOM= (ENSVINSE+2+] ) HHOM
T)SIAV4(ENSVINSZ+241) XUOM=(EXSVINGZ+2+1 ) NUON

LT Y. -‘.WZ"~‘§"1

9

Ve

[ (neowe 1=1° (1) om) (1wnox . 111301 |

&

>

N e

1

2un{ 1)SIAVH{EASVINSZ+] )HUON= (ENSVINSZ+] ) UON
(1)SIAV(Z+1 ) N00M=(Z+1)%HOM

Zes (TINIAVH(ENSVLIN4Z+T )XYOM=( EXSVIN4Z+] ) NUON
(INIAVE(Z+1)N00M=(7+1)Nu0M

-

LA DA il

ASVIN<]

S3A

3-80

( 1)240m=(2 ) xu0M

T+ (1)00n = (1)n90m
(M19W° 1=1° (1) om) (1n0¥ . 11)av3y
3 b
[ zezrz-mom)-mow |

8 S N 0 e e N L A S e S e N i D S A

; | awecasvan-msw |

290N

ST .
g R t o« A
TAY, 5 s E




is written in the first two element strings,
the third and fourth strings are not used.

(b) Alternate optimal solutions are considered:

o Elements 3-{NTASK+2): For each task, the minimum
value need from all solutions found. (not
accumulated)

o Elements (NTASK+3)-(2xNTASK+2): Average need,
each task, for the solutions found.

o Elements (2xNTASK+3)-(3xNTASK+2): The maximum
value need, each task, from all soltuions
found (Not accumulated)

o Elements (3xNFASK+3)-(4xNTASK+2): Square of the
average need, each task, for the solutions found.

o Elements (4xNTASK+3)-(5xNTASK+2): . The minimum
value surplus, each task, for all solutions
found (Not accumulated).

o Elements (5xNTASK+3)-(6xNTASK+2): The average
surplus, each task, for the solutions found.

e Elements (6xNTASK+3)-(7xNTASK+2): The maximum
value surplus, each task, for all solutions
(Not accumulated).

e Elements (7xNTASK+3)-(8xNTASK+2): The square of
the average surplus’, eacn task, for all solutions
found.

0 The record of maximum teams +1 has data only for
assignment to surplus. In that case surplus data
is written into the first four element strings
and strings five thru eight are not used.

3.13 - SUBROUTINE'STAT (TMEAN, TOTCAP, SD, GMEAN, GSD)
3.13.1 General

Subroutine (Figure 3-13) is the last subroutine called in
the damage iteration loop and is called immediately following com-
pletion of the mission 100p and personnel/materiel loop. The primary
function of subroutine STAT is to accumulate capability data for all
iterations. The data is then further processed by subroutine QUTD
when all iterations have been completed.

3-81

- y - - " L
'T b "“.‘;‘,\\ > *’ ~' .\ ‘\' *- L) ‘\ W \‘~ ‘\ [ T" \....




STAT (TMEAN,TOTCAP,SD,GMEAN,GSD)

NT3 = NTIMES + 3

o e s ,QL'.'~} .
ERCICL A

TC1 = TOTCAP(I,d,1)
TC2 = TOTCAP(I,d,2)

el L

.

B Ry by A

em-",,’:‘."'i‘f":"

g

wafl

RIS

- g
R

AA = AMIN1(TC1,TC2)
TMEAN(I,J,3) = TMEAN(I,J,3)+AA
S0(1,J,3)=S0(I,J,3)+AA*AA
THMEAN(I,J,1)=TMEAN(I,J,1)+TCl
SO(I,J,1)=SD(I,J,1)+TC1*TC1

NO ¢ ' TMEAN(I,J,2)=TMEAN(,J,2)+TC2
XTEMP=1.0 $0(1,d,2)=s0(1,J,2) + TC2*TC2
P
YES
XTEMP=AMIN1(TOTCAP(I,J,1),TOTCAP([,J,2) ,XTEMP)
4

A GHEAM(T,1)=GIIEAN(T,1)+XTEMP
GSD(I,1)=GSD( 1,1 )+XTEHP**2

MISON

<2

J =3
J SNMIson ?

JaJ+l Jl=J-1
XTEMP=AMIN1(TOTCAP(I,J,1),TOTCAP(I,s,2} y XTTMP}
GMEAN(1,J1)=GMEAN(I,J1) + XTEMP

GSD(1,J1)=GSD(1,J1)+ATEMP ** 2




3

o ~-
IJ g;;?\
Bl ;ﬁi“g
55

§§

o

ek

i AR o,

)
2
;
g

| e XRRAR A

WX i AR

>
.

e tele e te e

T L
N O S )

i
- .

[

b

¥

Capability data from array TOTCAP is accumulated into array
TMEAN for both personnel and materiel. The minimum value of the per-
sonnel or materiel capability is also accumulated into array TMEAN and
represents the maximum unit capability. The squares of each of the
capability values are summed into array SD for use in calculating the
confidence interval. A1l of the above arrays are indexed by time
period number, mission number, and personnel (1), materiel (2) or unit
(3) indicator.

Capability is also calculated for combinations of missions,

if there is more than one.
the missions considered.

values.

array GSD.
combination indicator:

3.13.2

This value is the minimum capability of
Array GMEAN is agsed to accumulate these
The square of each caiculated capability is accumulated into
Both of these arrays are indexed by time period and mission
1=Mission 1 and 2; 2=Mission 1, 2, & 3; etc.

COMMON BLOCKS .
GENERL

3.14 SUBROUTINE QUTD (TMEAN, SD, GMEAN, GSD)

3.14.1 General

Subroutine QUTD (Figure 3-14) is called by the MAIN routine
after all replications of a particular damage set have been completed.
This routine calculates the average capability and confidence inter-
val at each time of interest. Calculations are made for personnel,
méterie1, unit, and mission combinations of unit capability. The
routine also calculates the integral (using the trapezodial rule) of
the unit and mission combination capabilities as a function of time.
Calculations are made using data accumulated by subroutine STAT on
each iteration. The arrays TMEAN and GMEAN contain summations of
capabilities comﬁuted each iteration. These data are simply divided




Vet e N

3. . :

~; Qﬁ%%& by the number of iterations to get the average values. Averages are

a) B ?
, - calculated in array TEMP for printing. The arrays SD and GSD contain
o summations of the square of the capability each iteration and are used
f}: for calculation of the confidence interval. These values are calculated
;Ef in array STEMP for printing.
-§f; The confidence intervals are based on the t test of signifi-
,:E cance for a 90 percent confidence level. The basic equation is:

3%

Y . _ 2 ey )2

' 90 percent Confidence Interval = L) ZX5-2X) 7N
41 N(N-1)

l

where: Xi = capability for iteration i

7 = number of iterations

E; tn)* table value of t for N-1 degrees of freedom
ot

\ ) @ Values of t(n) are input by a data statement in the subroutine. The
% - . table of these values is not extensive but is sufficient to provide
,sl reasonable accuracy in the calculations.
’-;:-,:

N Calculations are performed and printed for one or two missions
.53 at a time, determined by how many missions are included. A maximum
#
f;ﬁ . of two missions can be printed per page and mission 1 does not require
i:: the calculation or print of combined mission capability. Thus four
o separate calculation and print loops are required.
ot
25

)
L
2Ry
K
RS
28N
ke
23 ;:;@
oo

1S3
455

15

- 3-84

L

2

n;ﬁ‘ W St PRI S .ttt "..-._-( N .ﬂ.. e N e T e ey W et e a - ';‘:.:~;.'~..‘l-.. .................... “ . J




PR on b i B ol Bie B A ik Bt 2 0 A WA SAR B AL L bk i A Sl S PR A ST Sl VPR AN YA EL I BN N ISR R
3 ) "
*

|

: o QUTD (TMEAN,SD,GMEAN,GSD) ‘
e ;‘n‘.“‘!‘\

R+ INITIALIZE VBLS.
3 INITIALIZE AREA UNDER CURVE TO Q
5 IDONE=0
Iy (OF MISSIONS PRINTED)
8 ‘ ~g
=MININUM OF 10OKE,2

# MISSIONS/PAGE

* 4 MISSION

[0

%

A

“ INCREMENT PAGE COUNT
w TITLE PAGE

¥

J §i

W)

5

IDOME=[DOME+1
(1 MISSIOM REMAINING)

AR

ST Rppepup
X CALCULATE '1EAN CAPABILITIEY | [CALCULATE EAY CAPABILITIE '
Iy (1st & OHLY MISSIOM) | L{L ssicn EMAINING i
PRINT CAPABILITIES | PRINT CAPABILITIES |
A Lo - .
’ 7 JETAIL I
¥ " c :
, [ FOR ) !
: e . 0
: | UMULATIVE
AREA ON l
R N 1
QL == Y !
- CALCULATE CUM. AREA | |caLcuLaTe cum. ARea ]
5, (1st 3 ONLY [1ISSION) ;| (1 "ISSION REMAINING) '
? PRINT AREA . 2RINT WREX !
. L 1
L) -— ey e e —* — -— ey e - .

FAFAS
BN
oo

-14. Sudroutine IUTD




X; ouTD

\.

s

2 RPN

B Gy

2 [TOONE=TDONE+2

3y (AT LEAST 2 MISSIONS

NS REMATN)

Y IPREV=TDUNE=T

: ,
5] !
e IDONE > 2

;§§

g

1) ALCULATE MEAN CAPABILITIES ICALCULATE MEAN CAPABILI-

o 1st & 2nd - BOTH & ONLY

1q» . MISSIONS) TIES (NEXT TWO MISSIONS

P PRINT CAPABILITIES PRINT CAPABILITIES

3 |

NCREMENT PAGE
& COUNT

INCREMENT PAGE
& COUNT

Zm.ﬁf:‘ o

»
2

5 CALCULATE CUM. AREA CALCULATE CUM. AREA
(1st & 2nd - BOTH MISSIONS (NEXT TWO MISSIONS)

PRINT AREA PRINT AREA

v v

_‘.‘? Z:} T

i

PR R
1Al

ﬁsﬁyﬂ Figure 3-14. Subroutine OUTD (Continued)

3-86

..... -, . e e e - Lo
ey N I A R R PO o W
-, A R R I W S e




Pt o 3

(
»
afof
(=

IPAAN LR
.,

-
1)
N
»

&/

TR

SN i

%

WA s

A A A

?

S RTRS y

e s

-

Y-y

)
N

e
L

A

X

LY

3

“T;

M

[« PR

3 yiﬁ3§

q

-

oeTarL | ™
1
ves /3 o1 MO
i )
s Jé
1 TR
I = 1+1 /[TEMP(1)=TMEAN(J, TOONE . 1)/ FLOAT(TTRATE)

STEMP(1)=SD(J, IDONE,I)-FLOAT(ITRATE ) *TEMP(1)**2

A
() =GMEAN(J, IOONE-1)/] | 125
FLOAT( ITRATE)

T
[STEMP(4)GS0(J, IDONE-1)-
FLOAT( [TRATE ) *TEMP (4 )**2

| STEMP(1)=SQRT(STEMP(I)/ (FLOAT(ITRATE)-1.0)]
STEMP(1)=TSIG*STEMP([)/SQRT(FLOAT(ITRATE))

I 7

STEMP(4)=SQRT(STEMP(4)/(FLOAT(ITRATE)-1.0)
§IEMPS4)'ISIG*STEMP(d)/SQRT(FLOAT(!RATE))

Je1 “ES

(WRITE(IOUT,1014)ZERQ, {TEMP

YES

¥ 115
[4RITE(IOUT,1015)TEMP(T) ,STEMP(1), =L,4 |

YES

J =NT3

l"n
IHRITE(QQUT.IOIS)TEMP(I).STEMP(I), -I.JH

(WRITE{IOUT,1018)TIMES(J=2),TEMP{I)STEMP(T),l=1,4)

Figura 3-.d, Sucroutine WTC !Continued)

"\‘ . o, L o L " - L3P JPRL N ) . - - - - . - - - - . . . .
Y ' L . . e A . L R A R L A '
i R \ [l l‘.-! V |, Y, ‘? St . 't v’ MO at ot N St e e ' KR A -




; ouTD
YRR

g WRITE(IOUT,1008) ITRATE
v LCONT=LCONT+NTIMES+15

Y

i IPGCT=IPGCT+1

i WRITE(IOUT,1020) IPGCT

' NRITE§IOUT.2021)IDONE,IDONE

. WRITE(IOUT,2019)

YES
AREAiI)s((AUNDER(Z,I)+AUNDER(1,I))/2.0)*TIMES(1
X ARAT(1)=AREA(T)*NTEAMS

4.‘ -

N o

x

h WRITE(IOUT,2025)AUNDER(L,1),ZERQ,ZERO,AUNDER(1,2),ZEROD,ZERD,

i » WS TIMES(1),(AUNDER(2,1),AREA(I),ARAT(I),I=1,2)

i..: {T33=NTIMES+1

;

:? RETURN I 178 L2=LL-2

:

h

H=(AUNDER(LL , I)+AUNDER(L1,I))/2.0
- AREA(I)=AREA(L)+H*(TIMES(L1)-TIMES(L2))
~ ARAT(1)=AREA( [ )*NTEAMS

2 |

; y

" WRITE(IQUT,2026)TIMES(L1), (AUNDER(LL,I),

“ AREA(1),ARAT(I),I=1,2

+ (R T b__—-l

RS

g DAY

X

& Figure 3-14, Subroutine OUTD (Continued)




L

(R 4

S W

A, R

L

P 2

Il -

[

M
!

1% WL
T e XA N

i
vy

RS AR INL T T.T T PP P R e cwmamara o
-------- RO A

- - -
I OAROTA WA "‘\~" Yy

.......

3.15 SUBROUTINE QUTS

3.15.1 General

Subroutine QUTS is called by MAIN if the option SCHOKE is
greater than zero. Subroutine OUTS controls the printing of the
"choke" data output (Sensitivity Analysis Needs and Surplus). This
is accomplished by reading the first two elements (WORK(1) & WORK(2))
of each record in DEFINE FILE 21 to see if data exists in that record.
The subroutine operates through a set of nested loops over missions,
personnel/materiel, and team number, with the addition of one after
the team loop, for those occasions when all teams were constructed.

The variable WORK(1) is a count of the number of iterations
for which data is stored in that particular record. If alternate
optimal solutions were desired, MULTF greater than zero, WORK(2) is a

count of the total number of solutions represented by the data. If
WORK(1) is zero then the next record is read until a record with data
is found. The regular output format will accommodate output for two
teams per page. When alternate optimal solutions are desired, an ex-
panded output format is used and only one team per output page can be
printed. Therefore, if MULTF>0 subroutine PRNT is called each time
data is located. If MULTF=0 the record number, KOUNT, is stored in
ITAG until a second record with data is located or until all team num-

bers plus one have been searched.

The call to subroutine PRNT is made with five arguments.
The first argument has no variable name in QUTS but is received by
PRNT as [FLG. 1Its values and their meanings are: O-multiple optimal
solution format is required; l-output for only one team, regular for-
mat, is required; 2-output for two teams, regular format, is required;
and 3-end of team output format required.

fo gt N N Tt A e T T e




ety

RETURN

I ORI E o

AR

o
-

Jal
J = J+l
YES /K =1 NO
K=27? Kl =K
K = K+1
100 ° vES NO
F Y

KOUNT
>

READ(II'KQUNT) (HORK(I[J).IJ=1,2

Note i

HORK(1)
<

0

[TAG = {QUNT

YES

CALLPRNT(Q,J1,4,
KOUNT,Q)

CALLPRNT(2,J1,X1,ITAG,KOUNT)

ﬂﬁAﬂ!!lﬂl

Note i:

(NTEANS=1)X2XMHISON

Figure 3-15. Subroutine JUTS

--------------

.................
.........
......................

S e et AT
W “:‘_‘"—. *a“a%ar ‘\A “. -\ “.._.. _‘- ._ - \




>, oy LA A e ———
s e Mg MR W I W W WYY Y DRI S oAtk e i, e R i e O P A it i S S i S A Tl e A A i e

.............

TS

CAF
L)

KOUNT=KOUNT+1

READ(1I'KOUNT) (WORK(IJ),IJd=1,2)

YES

CALLPRNT(2,J1,K1, ITAG,KOUNT)

iy

CALLPRNT(1,J1,K1,1ITAG,0)
T CALLPRNT(1,J1,K1,KOUNT,0)

L ITAG= | l CALLPRNT (0,J1,K1,KOUNT,0
[ 4 }

|

CALLPRNT (3,J1,K1,0,0)

Note i = (NTEAMS+1)X2XNMISOM

Figure 3-15. Subroutine QUTS (Continued)




B o Rl ) ekt Sl B A A S e ML PR AN Al SV R AJC Al Tk SN S NI SR A A A i R i)

The second and third arguments, J1 and K1, indicate the mis-
sion number and personnel (1) or materiel (2). The fourth and fifth
arguments pass the record number of data to be used by subroutine PRNT.
Both of these arguments are therefore used only when the first argu-
ment is 2. When the first argument is O or 1 then ITAG or KOUNT, as
appropriate, is passed as the fourth argument and the fifth argument
is zero. Both are zeroed if the first argument is 3.

3.15.2 COMMON_BLOCKS

GENERL
KTR2
PRNTIT
WK2

3.16 SUBROUTINE PRNT
3.16.1 General

Subroutine PRNT calculates and prints the "choke" output
using data which has been accumulated and stored in DEFINE FILE 21 by
subroutine CHOKE (para. 3.12). Subroutine PRNT is called by subroutine
OUTS with calling arguments which indicate the type of data to be read
and output formatting required (IFLG), the mission number (J), person-
nel or materiel (K), and record numbers of data to be used (ITEM 1 and
ITEM 2). A local variable, ILAST, is used in conjunction with IFLG
for further definition of output format requirgments. [LAST is given
values of 1 to 7 and is used as a pointer for the format of printing
top and bottom lines on the output.

Calculations in PRNT are made primarily by the functions
SIGMA, WORKFX, SQRTSG, and a duplicate set SIGMAl, WORKF1l, and SQRTSI.
The data which is read from DEFINE FILE 21 is stored in array WORK for
use with the first three functions. I[f calculations and output of two
teams is required, the second data set is sfqred in array WORK1 for




SR s S B RS AR S R I Tt i A Sl SR Bt Siin e de it e s e fur At e i e i i "'_""'"W

SN
o

,.
LS

N

%

31‘. (34:"-\ . . .

T3 BSOS use with the second set of functions. Discussion will be limited to

one case using the array WORK. The precise structure of DEFINE FILE 21
is discussed in paragraph 3.12.3. In general, each record contains
data of needs and surpluses, and the squares of each, accumulated for
all the iterations that a particular team "choked." When the alternate
solution option is exercised the minimum and maximum value for both
needs and surpluses is also contained in the record.

B A

-
b ™
et

o
bl i

iy

Using the record number furnished by QUTS, subroutine PRNT
reads the appropriate data record. The function WORFX is used with
appropriate data elements to calculate the average need and surplus per
iteration for each personnel or materiel line item. The functions SIGMA
and SQRTSG are used in the calculation of the standard deviation using
the dummy variables SIGl and SIG2 for intermediate calculations in the
process. The calculation of standard deviation uses the general equa-

RN L N
o L

R
"[17')9"'1 e

T T

tion:

R s =, [Zx§-N§°
N-1

where: N = number of iterations

A N

b
Tt

Xi = value of needs or surplus for iteration i
X = averade value of needs or suroluses

T

S
Tt

"}‘-v;s.

3.16.2 COMMON_BLOCKS

u{:'w{‘ 7

DLY1
g GENERL
3 KTR2
- PRNTIT
WK2
:
.
B
L%
B oy
B e
'y
I}
. 3-93
i‘t‘
[+
I .,'q.' \ _;' ,'-T,J.—_'._- \&"-' TR T A ._,-. " .-:.‘.}\.- ................ e e N e e e
i N i - v VIR VLA YL WA HA DL AL AR RICE,




i

AR
A T,
%4

i’{‘c\:\

PRNT(IFLG,J,K,ITEM],ITEM2)

e & o
-~ -

X Sx G
-

ey Sy

AN

&L

DEFINE SIGMA(IL,IA,IB,IC)=WORK(IL+IA+IB*NTASK3)-WORK(1)
*(WORK( IL+IA+IC*NTASK3)/WORK(1))**2

OEFINE WORKFX(IL,IA,IB)=WORK(IL+IA+IB*NTASK3)/WORK(1)
DEFINE SQRTSG(SIGA)=SQRT(SIGA/(WORK(1)-1.0))

OEFINE SIGMA1(IL,IA,IB,IC)=WORK(IL+IA+IB*NTASK3)-WORK1(1)
*(WORK( IL+IA+IC*NTASK3)/WORK1(1))**2

p DEFINE WORKF1(IL,IA,IB)=WORK(IL+IA+IB*NTASK3)/WORK1(1)
2 DEFINE SQRTS1(SIGA)=SQRT(SIGA/WORKI(1)-1.0))
I
o Y
N
¥ [ =21
5 N1 = NTEAMS + 1

LT

ERROR STOP

X
@ NO T N_YES VES
ﬁz' o~ Ll = [TEM IFLG 550 IFL
o 3
f% llo]
e
Print bottcm line of
i output form - format
o determined 5y ILAST
l'%( _
.
“:‘- '
- RETUR
af Check o see if.new NTASK = NTASKS(X)
nage is required - page [P NTASK3 = NTASK
5, or continue as reguired
b
& NO

I

NTASKS = NTASL3*3




:
L
@ NTEAMS
%
i3 - Multiple Optimal
&1 Solution format and
by Calculations
A - PRINT Qutput Header
g - Calculate appropriate
record. length y
i - Read appropriate recordﬁ - One team out-
& - Calculate statistics ' put
: - Print output - Regular choke - Two team choke to be
%l data calculated and output
ol - P;;ggrOUtput - Print output header
. ‘ - Calculate appropriate
) record lengths
1% RETURN See Detail B - Read Sppropriate
kA = Calculate records .
3 - A1l teams completed record length - Calculate statistics
surplus only, after - Read record for both teams
; last team format and - Calculate - Print output
;_(;) calculations statistics
¥ - Print Output Header - Print output
o - Calculate appropriate
¢ record length 7
' - Read appropriate record $-
. - Calculate statistics ‘ RETURN
A\ - Print output RETURN
d _J - Two teams for output
R . ¥ Second is "After last
team" surplus only
5 RETURN - Print output header
- Calculate record length
for each

Read each record
- Calculate statistics
- Print output

R
]

¢

>
Ny

»
cg-d

5&’;‘.
»
"o

N

P

v

RETURN

w
g

g Figure 3-16. Subroutine PRNT (Continued)




N

RLGTH = NTASK3*4

;g LCONT = LCONT + NTASK = 11
¥

ALGTH = RLGTH*Z |

S

S

RLGTH = ALGTH « 2 |
¥

1TEM1) (HORK (1! . M1 = 1. 3LGTHI |

Mo=1 N0
M1 > NTASK

M1 = i1+l

L 5
- Gi i".i';‘)
I PRNT DETAIL | (Calculate Needs & Surplus 7or One Team)
B

vrn
-
X2}

N

L)

OO

K Liritz wng for LIGHT |

SiGl = SCRTSG(SIGL;
« ' 5162 = SIGMAIL,2,3.2)

3T

"\\

4

e

5

b ’

5 TRK(L] = ORKFCIL.Z.2)
. IRK(2) = HORKFYIL,2Z,2)
e R I R e .,.:!:,,\ L]
L AR ‘ . ] :

“Z : ‘ Tiaure -8, Iutroucine 27T JContinues,

3 - =

% :

.»“

3-96

x, Rt R R R Rt T et el R P A T T
S‘»!'I‘ r,l“‘ 'y "o _, & * 0y . '. '.-‘ 4 v f ‘.-“- « ..f\' 'h{ " ._' "t e Y \.'(..' @t e gt e et




(ioderate Jamage “aterial) {Light Jamage “ateriei)
Y N0

1 Ltsce »vyraske2 |

-
[ L XY
- oesl
G D
A
" u

[W )

7ES
M—

g’ {:inv s SIA(11.2 1 .3)

PRTSG(SIGL)
GMA(LL,2,3.2)

AL

S0TSG(SIaL)
EIG-M(LL 02,3.2) ) gp— .

G ]

S

©x
=
S

HRK(L; = S0RXEXILL.2.2)
SR Z) s GORWFU(LL,2.2}
SRITS - ‘...JRk(.,. {G1,.RK(2),5162

o il

287

YRK(LY . l OR%FY(LL,2.; 32OTIMA 1t
UAK(2) s ORKFY(LL,2.2; ’ -
HRITE - L, L1,5061,.RR(2),5:62 ~ TIMES{NTINED; *S0

O—L?:_‘E - "% s2 Argmisant cecg ",E"l

[

ore if:

2E9°I(L, 2!
% TIMES TES1 80 3 )
\ |»9v-- sv _oq niniiane cmis i- '
t
& !
- 2890
, . (]
iy WCONT @ LIINT « 1Tasev? o 2
ey 2ITT - G0R%IY,

pq

faure 3el3. lugrautine T ontinueg’

< LRI R - .« v« - . . - . .- e N N .
c. ""’o, LAEA \- \ .-_ . \{.\c “-....-\1 ..-.\‘ ....‘ - W .'.'.'4 N e -




B TSR .

E \ ‘\:\\:h\. Y

3.17 SUBROUTINE QUTA
3.17.1 General

Subroutine OUTA is called by the MAIN routine if the option
flag ASSIGN is greater than zero. Subroutine OUTA controls the calcu-
lation and printing of assignment data by appropriate calls to subrou-
tine PRNTA. The routine reads the first element, WORK(1), of each
record in DEFINE FILE 22. The read is within a set of nested loops for
mission number, personnel/materiel, and team number. The first ele-
ment of each record is the count of the number of iterations for which
data was accumulated in that record. Subroutine PRNTA is called when
this element is greater than zero. The calling arguments are: Ji,
mission number; K1, personnel or materiel; L1, team number; and KOUNT,
the record number found to have data.

3.17.2 . COMMON BLOCKS

GENERL
PRNTIT
WK2

3.18 SUBROUTINE PRNTA (J, K, L, KOUNT)

3.18.1 General

Subroutine PRNTA is called by subroutine OUTA for the calcu-
lation and printing of assignment data. Assignments of each item to
fill each requirement (the allocations made by the transportation
algorithm to build a particular team) are recorded in DEFINE FILE 22
by subroutine ASN (para 3.11).

The calling arguments furnished by OUTA are: J, mission
number; K, personnel/materiel; L, team number; and KOUNT, the record




[ SR OS DR % -

QUTA
s
KOUNT = 0
RETURN 9=l NO
J >NMISON ?
J = J+1 Jl = J
100
K=1
YES K>2 2 NO
K=kl KL = K
20
‘ |
c
YY) READ (22 KOUNT HORK(1)
W .t
CALL;PRNTA(JI,KI,LI,KOUNT)
Note i: NTEAMS*2*NMISON
Figure 3-17. Subroutine QUTA
','n.. .
3-99
Bl e e o T g A Tt o e AT AT N T ST TN

.....

L

LKOUNT= KOUNT+1




.........................
.........................

number, in DEFINE FILE 22 to be read. The data in DEFINE FILE 22 is

- . . . s
SO accumulated for all iterations that a particular mission-team was the
- maximum and represents the allocation of each particular item to the
. fi1l of a requirement or to surplus. The first element of each record
: is the number of iterations represented by the data. The record is

read into array WORK and element WORK(1) is used to calculate average
values for all other elements, the assignments. (NOTE: The element

N WORK(2) is not used, assignment data for Task 1 begins in element 3,
,3 WORK(3).) The average survivors for each task line are accumulated

b into array PS to get totals.

% The calculations and printing are made by task line for a

g maximum of thirteen columns plus surplus and total. IFIRST and ILAST

define the 1imits for this procedure and only when ILAST is equal to or
greater than the numbers of tasks in the surplus and total for that
task printed. The variable IGM is used to indicate if a particular
row doe§ have some value greater than zero in it. If all values in

it " EF Kok

a row are zero that row is not printed, except when the surplus and
ny I‘-@ total are to be printed. '
-
4 .
g Three sets of nested loops perform the calculations and the

output. The first set is used for both personnel and undamaged mat-
2 eriel. The second and third set perform the same functions but re-
f quire different indexes for the assignment of materiel items in the
} 1ight and moderate damage categories.
.} 3.18.2 COMMON BLOCKS
)
3
o GENERL
- PRNTIT

WK2

¢ c':\.\
A
E Lo




-----------
.................................................

FZ72

PRHTA (J,K,L ,KOUNT)

;. £ AT
E 111 = 22
3 NTASK = NTASKS(K)
% NTASK1 = NTASK + 1
1 ITASK = NTASK
b
¥

YES
et
3¢
% NTASK = NTASK*3
;% Page and Line count
X checks -
e Determine if new page
s and heading is needed

f; : l

b RLGTH = NTASKI*NTASK + 2

A v

)@ READ(II1'KOUNT)(WORK{M1),M1=1,RLGTH)
v T

[LAST = 0

[FIRST = ILAST + 1-
ILAST = MINO(ILAST + 13,ITASK)
MLAST = (ILAST-IFIRST+1)*2

P L

:
H4
% YES
- \ 2
7 MLAST = 30
'j _ NO ]
fy J1 = 2
L 4
P, Print Heading for this
] ~_'_.$:'.;?, output

‘.
) Figure 3-18. Subroutine PRNTA




Y el aF Y T vTw MW -—v AU ‘et Tad
........ AR AC A AR AL AN ACARAE A e\ A b RARCRA A S s |

Ay
[/ ‘-}J&,‘:'"L'

TONPPRE

:-é

MM >ILAST

M1 o= MM+l PSTLL,1)=PS(L1,1)+WORK(J1+MM)/WORK(1) |

e, Py
o ChaR B2l 2
e Eas Rt

P Ve >
AP
=
I
—<

¥
vES NO [FS(CT,17=P8 (LT, 1) *WORK(J1#HTASKL)/WORK(1] ]
ves /M = IFIRST o

M >ILAST
[ERK(M)=NORK{J1+M5/NORKZ1;

M M+l
WRITE(IOUT,1009)L1('WRK(M) ,M=[FIRST,ILAST)
WRITE(IOUT,2001 )WRK(NTASK1),PS(L1,1),Ll

s
/’

2 4,
R

"t

-
e

AR

7

[WRITE(IOUT,1009)L1, (WRK(M) M=IFIRST,ILAST) |
% '

Wi=J1 +rNTA§K1 |

g )

FAriagls
—

XX

igure 3-18. Subroutine 28NTA (Continued)

PA 0
B
-
[t

-~ >
AR

\"k' ~y

% ¥ b
s

R L W
A;—l.};‘

Y]

: 3-102

U
o
3
=Te
.




o Te TR AT

R Ll &
l
etatiate

oy
'.‘v
P

3

3>

e
&

>

'{"J

LN et
«L‘!b‘-“.
<
m
wn
0 =
o

-

5 £ M = IFIRST

3 YES/im >1asT O

* ‘M = M

X M= L/ (PS(LI;2)=PS (LT, 2)=WORK(JL+M)/WORK(1)
y v

;_"

?3 MO YES

PS(L1,2)=PS(L1,2)+

R ! WORK(1)+PS(L1,1) |
2 YES NO | WORK(J1+NTASK1 ) /WORK(1)+PS(

3 .

B3 YES

YES -
-"i WRK(M) ;
Vi =WORK(J1+M) /WORK(1) '
H IGH = | -
S NO WRITE(IOUT,1009)L1, (WRK(M) ,M=IFIRST, ILAST)
2 WRITE(IOUT,2001 )WRK(NTASK1) ,PS(L1,2)L1

t‘ Iwaxfm)swoak(alm)/woaxglz[
%

fWRITE(TOUT,1009)L1 (WRK(J1) ,M=IFIRST, ILAST |

4 NO
% | +

Pl = J1 + nutasxyl
]

] .0y .
2 (t:'f;:*i; Figure 3-18. Subroutine PRNTA (Continued)
A




Ll =1
L1 >ITASK
Ll = L1+1

MM > ILAST
(PSTL1,3)=PS(L1,3)*WORK({J1+MM)/WORK(1] |

| MM = MM+l

63

— _v
PS(L1,3)=PS(L1,3)+
WORK (J1+NTASK1)/WORK(1)+PS(L1,2)

M = IFIRS
M >ILAST+1

=M+l

WRK(M)

=WORK (J1+M) /WORK (1)

WRITE(IOUT,1009)L1,(WRK(M) ,M=IFIRST,ILAST)
WRITE(IOUT,2001)WRK(NTASK1),PS(L1,3),L1

[WRK(M)=WORK(J1+M)/WORK( ) |

A

| WRITE(IOUT,1009)LY, (WRK(JM) ,M=IFIRST,ILAST)

»re

A 4
[ J1=J1+NTASKL |
1

e WRITE(IOUT,1012)

v "'A AR N 1A \l\ LA "':‘\ ’ -. L)

QUTPUT

WRITE END OF _.{ RETURN

Figqure 3-18. Subroutine PRNTA
(Continued)

v"!\-nu
M &

---------
- a s



3 Eﬁfﬁ- 3.19 PROGRAM PARAM

iﬁ 3.19.1 General

A

%3 Program PARAM is used to read any input file and construct

] a file of PARAMETER statements which define all the dimensioning var-
iables required by Program AMORE. These dimensioning variables must

: be made available to the AMORE routine through the FORTRAN PROC ele-

? ment GPARAM.

;: Program PARAM reads the AMORE input deck to obtain six of

‘ﬁ the input variables. Those variables are: (1) number of times,

b NTIMES; (2) number of personnel tasks, NTASKS(1); (3) number of mat-

“ eriel lines, NTASKS(2); (4) total number of authorized individual

:3 personnel and materiel items, RANDS; (5) number of teams, NTEAMS; and

o (6) number of missions, NMISON. These.variables are then used to cal-

& culate a total of nineteen dimensioning variables. These variables

Nl are fully defined in paragraph 2.2, Chapter 2.

3} PARAM reads from a file designated unit 5. The output is
written to a file designated unit 10. This output file must then be

< transferred to a user designated file/element if retention is desired.

2 The Procedure Definition Processor (PDP) must then be exercised on

this output to create the FORTRAN PROC.

y 3.19.2 Operation

A typical runstream is shown below:

@RUN

@ASG,A PROGFILE.

@ASG,A DATAFILE.

@ASG,T 10.

@XQT PROGFILE.PARAM/Abs

@ADD DATAFILE.GPARAM
s @ED 10., PROGFILE.GPARAM
ot %, @PDP,FL PROFGILE.GPARAM, .GPARAM
R @FIN




-----

The FORTRAN PROC, GPARAM is now available for the compile
of the AMORE model.

LA

KOR iy
-’ %

il ,®
: ty

x
&

“

.
==

) YA

R
P L LD & &

B
¥




'ﬁmu [A . - a - .. - .. -
i
X
N
%
- PRI
RN
§ PARAM
A
X
NTASK1 = MAXO(NTASKS(1),NTASKS(2))
‘ : NTASK3 = MAXO(NTASKS(1),NTASKS(2)*3)
27 K1 = NTIMES + 3
:i K2 = NMISON - 1
o,
’4 ]
o
A
i}
3§
K& = NTIMES + 2
S K9 = NTASKS(2)*3
3 K10 = NTASK1 + 1
? K11 = NTASK3 + 1
: K13 = NTASK3*8*2
0 K14 = K10*K11
& K16 = (NTEAMS+1)*2*NMISON+1
IRLP2 = NTASKS(1)*(NTASKS(1)+1)+Z
B ~ TRLMZ = KG*(NTASKS(2)+1)+2
R e, K18 = MAXO(IRLP2,[RLM2)
S
" 3 :
3
g e
5 WRITE 'GPARAM PROC
Ny WRITE 'HI1LIES' = NTIMES
i . ‘N11AMS' = NTEAMS
A% 'NIISON' = NMISON
- ‘NLINDS' = BANODS
'NI1XS1' = NTASKS(1)
*N11KS2' = NTASKS(2)
'N11SK1' = NTASK1
*NI1SK3' = NTASK3
‘N11K1' = K1
'N11K2' = K2
: ‘N11K4' = K4
i 'N11K9' = X9
| 'N11K10' = K10 |
g 'N11K11' = K11
3. 'N11K13' = K13
b 'NLIK14' = K14
'NIDX' = K16
A 'MRL21' = K13
% 'WRL22' = K18
1Y} Y,
RS

._: Figure 3-12. Program PARAM (Continued!




S s

e

-

AR

AR

e A
"ol |

L
"y
73
\

»
L}

iy "-‘i'.‘ LA A i Sl I S Nl NP S e e DA d LA NIOLE A SRS e e R
IR
“:“‘w,‘:":
A4 PARAM
DIMENSION NTASKS(2)
INTEGER RANDS
RANDS = 0

READ - II ~ Dummy Read of Option Flag Card

READ - NTIMES (Number of Times)

READ - II(1,to NTIMES) - Dummy read of all times
READ~NTASKS(1) (Number of personnel tasks)

L

N = NTASKS(1)

Loop 10 (1 to N)
READ - II,III(name) + INIT1(Authorized Quantity)

RANDS = RANDS + INIT1

READ - NTASKS(2) (Number of Materiel Lines

M = NTASKS(2)
Loop 20 (1 to M)

READ - II,III(Name) + INIT2(Authorized Quantity)

RANDS = RANDS + INIT2

Loop 30 (1 to N) .
READ Personnel transfer Matrix

I

Loop 40 (1 to M)
READ Materiel Transfer Matrix

I

READ NTEAMS, NMISON

Figure 3-19. Program PARAM

>

LR T M T e A", a . LRI Y I S I S S S
IR ;& "-‘ . "-""‘-'S".' N AR 2 WL AL R R fe Ty e e e

................
--------------

..........
........
-




SECTION 4
OPERATING ENVIRONMENT
4.1 HARDWARE
The AMORE model is operational on the UNIVAC 1100/82. The
model has no unusual requirements. Input can be either in batch card
form or from stored files of card images. OQutput requires a standard

1ine printer.

CPU Regquirements

As noted in paragraph 2.2, the required dimensions for var-
ious arrays within the model are determined by six of the input var-
iables. These variables may be used to define a total of 19 param-
eters which must be in a FORTRAN PROC, "GPARAM". This PROC is INCLUDE'd
in each component of the mdoel. The program "PARAM" (para 3.19) pro-
vides the capability to construct this PROC file to fit the require-
ments of any input deck.

The model requires an IBANK of 12632 decimal words. The
following equation can be used to determine the DBANK requirement for
a given set of dimension variables as defined in paragraph 2.2.

NllNDS+2(N11KSl)+2(N11K51)2+6(N11KSZ)+4(N11K52)2
+20(N11SK1)+2[(N11SK3)+{(N11SKIxN1IMES)+4(N11SK1xN11SK3)
[f Missions = 1
+12(N1IMES)+N11AMS(N11KS1+N11KS2)+10614

Or if Mission > 2

+(N11AMSXN11SON)(N11KS1+N11KS2)+10(N11MESxN11SON)
+30(N11SON)+10578

..............




. [.“ﬂ"iﬂ'._'s.-ﬁvi

LY

Q
S

A

-

=

LA

-
PR,

-
B

J.-e
-

AN

e ¥
W7 O,

0 '{lql

[Fels

A

4
-‘" -

-

’.f'\
1‘-\*\3

- 'i\ E -~

haa St S - - - ~ e
T B R e A A A MM A S AR AMAAZE Rt v s et A M A S
......... ) T

The DBANK requived if the model is dimensioned for the example unit
in the Users Manual is 27050 decimal words. The input for that unit
had 24 times, 35 personnel tasks, 19 materiel lines, 375 individual
personnel and materiel items, 18 teams, and 1 mission.

4.2 SUPPORT SOFTWARE

The program is written in ANSI FORTRAN and the UNIVAC ASCII
FORTRAN compiler GFTN must be used for compilation.
the random number generator BARN which is included in the CAA
LIBS*FTN. Transfer of the model to other facilities should ensure
the availability of a compatible random number generator.

The model uses




L)
.
!
!
N

o e lea W 4

; 'Qﬂ__f‘ '
W W P W W et

[

* <

y ]
‘. 1]
Lty
‘ l‘ '

[ Ra My &

APPENDIX A

MUNKRES' ALGORITHM

A.l GENERAL

The simplest case of the general allocation problem is the
assignment problem. It is meré]y a situation which involves the
assignment of n available objects to n points of need, where some
cost accompanies each assignment. For example, a unit may require
certain skills to perform three tasks. If there are only three
personnel with these skills remaining in this unit, the unit
commander would probably make an estimate of how much time it would
take for each of these skilled personnel to move to each task location
and be prepared to perform the tasks. His estimate of those times
can be expressed in the cells of a matrix as shown in Figure A-1l.

TASKS (DEMANDS)

I II [II
A 20 min_ 40 min 30 min
SKILLED
PERSONNEL . . .
(RESOURCES) 8 10 min 30 min 40 min
C 20 min 10 min 40 min
FIGURE A-1.

The commander would likely wish to have the skills assigned as
quickly as possible, in order to reach full capability in minimum
time. Therefore, the total assignment time is to be kept to a
minimum.




2ty
ol

ff’{bl'
PO Sl ol N

85

Nl

c By
L o

-
v}
By

ye

'R S RN DY

The optimal solution is as follows:

Skill A to Task III Time = 30 min.
Skill B to Task I Time = 1Q min.
Ski11 C to Task II Time = 1Q min.

Total time to assign skills is 50 min.

in difficulty, only one
Instead of n objects to
problem involves n source

The transportation problem, is,
degree removed from the assignment problem.
be sent to n locations, the transportation
points and m destination points. Munkres' algorithm is a highly
efficient solution technique for the transportation prohlem which
assigns specific resources to meet specific demands in a manner such
that either a minimization or a maximization of cost may he obtained.
In the AMORE model, a minimum optimal solution in terms of time is
sought using Munkres' algorithm. Specifically, the demands are the
mission requirements needed to incrementally build capability follow-
ing some form of degradation. The resources are the surviving per-
sonnel and materiel that can be assigned to satisfy the demands. The
costs are the times to transfer these resources, the delay time in the
decision making process, and in the case of damage materiel items,

If all resources are assigned and all demands are
The cost of a solution

repair times.
satisfied, then a solution has been found.
is then the sum of the cost of all assignments.
solution is one for which this sum has the lowest possible value. The
AMORE process seeks a solution via Munkres' Algorithm, which minimizes
the total cost (in terms of time) of the assignments and therefore

minimizes the average time per assignment for unit reconstitution.

An optimal minimum

A-2

R RS i._'. ..--..‘..v“.\‘.._..:_..:_‘.;_. ..........

St

.............
..............




A.2 ALGORITHM OPERATIONS

Munkres' algorithm first operates on the cost matrix to iden-
tify efficient initial assignments. If these initial assignments result
in assignment of all resources and satisfaction of all demands, then an
optimal solution has been reached. If all assignments have not been

;jﬂ made, then Munkres' algorithm repeatedly modifies the cost matrix and
§§ makes assignments until optimality is reached. These subsequent

=

P

assignments will be of two types: (1) a direct assignment of
unexhausted row resources to unsatisfied column demands, or (2) realloca-
2N tions of previous assignments to allow new resource allocations providing
minimum cost per assignment made.

% A.2.1 Algorithm Steps

w .

’§1 Munkres' algorithm, as used in the AMORE process, consists
- @ of five basic steps as outlined below. A solution may require one or
fuJ' e more of steps two through five to be replicated. Figure A-2 provides
P

5 a simplified flowchart of the algorithm processes.

STEP 1 Find the minimum cost in each column and
subtract that cost from each cost in the

Y column. Repeat the same procedure for

o each row. This results in at least one

53 zero cell in each row and column. Go to

by Step 2.

o STEP 2 Make the maximum allocation of resources

{j possible through the zero cells in the

\‘ modified matrix. Adjust row resources

BN and column demands accordingly. Cover (flag)

AN those columns where demands have been fully
ﬁ met (zeroed). If all columns are covered,

38 the solution is optimal; otherwise go to

’;3 Step 3.

h STEP 3 Choose an uncovered zero cell and flag
- it plus. If it lies in a row with
unexhausted resources, label it Z0 and

L, N

» PO
AT

":.1 -.'_\':-.
o’ A
v

4
d
¥
’r
i 3
K } - -’-...,-,,- R e I S T A U A S S PP . . . . YR EE .

LA S CRE S TR S O S SO T A SR K T I
! > W ; . R SO LRI N ) S P PR A R A




L9
'."
)
A
2
L e
5, STEP 1
3 Modification of the
S basic cost matrix
% i
R STEP 2
" Make allocations thru SOLUTIGN
§ zero cost cells - flag
34 P (cover) columns unere P4 ALL demands satisfied
b demand nas been satistied
o [
§ STEP 3 g~
} Find an uncovered zero. If
X its' row has resources,
label it Zo and go o STEP
£V, ) 4. [If the row has no re-
’ sources, label the zero
ok . .plus and cover the row.
Sy Search the row for a twice
), covered (row + column) zerc
3 : with allocations. Label it
minus and uncover its ¢al-
) ymn. Search this column
v for an uncovered zero [back
k : to start of STE? 3). I[f
&‘ all zeros are covered go to
Py STEP 3.
%,
R
i¥
g Y
¥ TED
Ly o uEC ) STEP 3
N f;::; :;tg :3n;;?21:632u3;e;6 Find_:ne smailest uncavered
:_ in its S84 %earcn “ha colRe ¢3st. lacuce 217 uncovered
wan of 'haé zero f9r 3 olus- €9st Yy that amount. In-
$lagged zers. Continue crease ali twice covered
L% 1aggec zera. - {row = ¢alumn) costs ay cre
N alternatively searching row N 40 20 STEP 3
X and column “or minus ane same amount. 30 0 Jver J.
. olus-*lagged zerg's astab-
3 lishing 1 chain for realloca-
3 tion. “he last 2lement will
¥ pe 2 plus zero with some
column demand and witn no
» minus zero in the sowce/umw -
e - eallocate, subtracting at
X mninus-flagged cells anc idd-
2, ing 1t slus-flagged celis.
! I 211 demang satis¥ieg- 15LITTN
] Leionalf -y 9 _’J PSR RALY
x> solution-if not STEP 2. p11 demands sat!sfied Zigure A-2
B~ T
AN G
‘.,.; L
; Figure A-2. Munkres Algorithm
- .
§1 A-4
q -
e

T B A S O LT



e} .-v‘:.-'.v‘-‘:"_.i-‘Y-x“v-gi"._ RIS A e S it et S ) .‘v} e L N T N N R T T ——
L e R S 4......'..'.‘..’.".__'*‘!

R go to Step 4. Otherwise cover the row.
If other zeros in the row lie in a
covered column and are in a cell having

- an allocation, flag these zero(s) minus

20 and uncover the associated columns. If

X all zeros are cuvered go to Step 5,

otherwise repeat step 3.

STEP 4 Beginning with Z, search for a minus

X flagged zero in %he column., If none is
X found, allocate the Z, cell the minimum
§ value of either the unallocated resources

of the Z, row or the unsatisfied demands

of the Z, column, decrease the Z, resources
. and demands accordingly, remove all flags
o and covers and go to Step 2. If a minus-
flagged zero is found in the column of Z
then the row of that zero is searched for
a plus-flagged zero. This search pro-
cedure is continued, column then row,
forming a chain of plus and minus-flagged
zero's. The chain ends when a plus-flagged
zero is found with no minus-flagged zero
in its column. Next, determine which
value among the following is minimum:
the unallocated resources of the Zy row,
or the unsatisfied demand of the last plus
zero in the chain, or the minimum alloca-
tion through the minus zero cell(s). Allo-
cate the resultant minimum value to all
plus zero dells in the chain. Decrease all
allocations to minus zero cells in the chain.
Remove all flags and covers and go to Step 2.

"

STEP 5 Identify the least uncovered cost, sub-
tract it from all uncovered costs, and
add this value to all twice covered costs.

.

! Retain all flags and covers and go to

3{ Step 3.

H A.2.2 An Example Application

% A better understanding of the previously discussed five

steps of Munkres' algorithm can be gained by means of an example applica-
tion. Considering the initial cost matrix shown in Figure A-3, the

v ‘4*‘- following sequence of algorithm steps derives an optimal solution for

y N

L5 KS
ey NEEDT GRS Wy GpEs. SN R N S




4 e 4 L S o e AR gl o o 2 -l “ A i et Cal T T, —
AN AL AT IO A i A A T I AN G a8 P % SN T RIS o B nip i B Saaaus s o e

«Wa¥,
.................

éxg /E§$& the allocation problem. Note that in the cost matrix, R represents
g gﬂﬁ’ resources available and D represents unsatisfied demands. Each cell
contains the cost for satisfying one unit of demand with one unit of

resource.

X FIGURE A-3. THE INITIAL COST MATRIX

ﬁ Step One: Modification of the Cost Matrix for Initial Assignment. To
25%( find an efficient initial assignment, Munkres' algorithm makes use of
N ) the following mathematical principle: 1if a constant is added or sub-
ﬁéﬁ tracted from any row or column of a cost matrix, then an assignment
ﬁ%f set which minimizes total costs in the new matrix also minimizes total
%%% costs in the original cost matrix, The algorithm: Find the minimum
- cost in the first column. Subtract that cost from each cost in the
;gi column. Repeat for all columns. Follow the same procedure for each
S{’ row. Proceed to Step Two.

Step One produces a new matrix (Figure A-4) with at least one

f&; zero in every row and every column. Maximal assignments of resources
e in Step Two to these zero cells will be efficient. If such an assign-
ﬁ : ment process exhausts all resources, the solution will be optimal.

g1 &0

h ~}M A-6




Y L N F L, T o T . ™ v . WL WLW
SO SRE CAC At SRR DL S A I P I M 2 S S S L A A M e AT Aok w g e Jee e R R

e "~4‘m;~zr‘,4r

' y?

el

#
.

Cre
AN

e
w e
i I'..-\

3

4
5 0 21 0 15 13
7 25 0 7 0 13
3 0 12 17 1 9

FIGURE A-4. COST MATRIX FOLLOWING STEP ONE

Step Two: Make the Maximal Initial Assignment to the Modified Cost

Matrix: For each zero cell, "remaining" row resources and column

demands are compared. The lesser of the two is assigned to the cell
and the row resources and column demands reduced accordingly. After
all such assignments are made, all columns with satisfied demands are
flagged or "covered". If all columns are covered (all demands satisfied),
the solution is optimal. The algorithm: Make the maximum allocation
through the zero cells in the modified cost matrix. Adjust row
resources and column demands accordingly. Cover all columns whose
demands have been satisfied. If all columns are covered, an optimal
solution has been found. Otherwise, proceed to Step Three. Upon
completion of Step Two where a solution is not achieved,

the "covering" process paves the way for identifying further opportuni-
ties for allocation or reallocation (Figure A-5). The values within
the "triangled" upper right-hand corners of zero cells represent
allocations of resources assigned to these cells.

Eads |
DI+




\Y

&
8

&

"‘Q‘ X2 N

.ﬁi&: COVER COVER COVER

o R

¥ 0

i 0

I8

2 :

3

ﬁﬁ FIGURE A-5. COST MATRIX FOLLOWING STEP TWO

e

B ‘ -

§§ Step Three: Create a Basis for Further Allocation or Reallocation.

‘ There may be some zeros which are not covered after Step Two. These
ii uncovered zeros will be associated with columns whose demands are not
ga met and rows whose resources are exhausted. Otherwise Step Two would
£y : not have been complete (i.e., either additional initial assignments
" )% could have been made, or the column should have been covered). Step
%5 - Tarce uill search for such uncovered zeros to be flagged ~lus, their
‘ﬁg rows ''ill then be covered and scarched for zcros vhich are now covered

.s

P

tuice (row and column). If therc has been an allocation to the cell of
a twice covered zero it is flagged minus and its associated column is
uncovered. This may uncover some previously covered zeros. This flag-
ging process begins to map out a potential path for allocation or

g _ ‘reallocation. The Step Three process ends with one of two conditions.
An uncovered zero is identified (to be flagged plus) in a row with
resources remaining. Such a zero is identified as Z0 for allocation
and processing now branches to Step Four. Alternatively, all zeros are
found to be covered and processing branches to Step Five to modify the
cost matrix to create other zeros. The algorithm: Choose an uncovered

g e g
% ~, E[Z.

J:t. 2

WAl

L

-

b fa

&

¥ zero. Flag it as plus. If it lies in a row with unexhausted resources,
ﬁf label it Z and proceed to Step Four. Otherwise, cover the row. If

' other zeros in this row lie in a covered column and are associated with
8y o '

R AR Nt \‘

SRR

> A-8

-

DI N i VA QT e e e e T S e e e e

.

A
Y
4




R R R P B A A A e e A I A St A Pt e el Al ST Jhdt Idioind SR AT R Al |

......................

rar
{
I
L

L T,

“

2

m}

+j? 7 5‘; a cell that has an allocation, flag the zero minus and uncover its

4 associated column. Repeat the process until an uncovered zero, flagged
% ; plus, is found to have resources remaining, then proceed to Step Four.
%E Otherwise, when all zeros are covered go to Step Five.

x{ :

. In applying Step Three to the example Cost Matrix, three
oM iterations of the step are required. Figure A-6 shows the first two

N

:;: iterations as labeling first the (1,5) position and then the (2,3)

gfi position with plus zeros. However neither qualify for being labeled

N Z° as both rows have exhausted resources. This results in both rows

ﬁ? being covered. However, the latter plus zero row has another zero in
§ it which has an allocation (the (2,1) position) and is therefore

R labeled minus zero. The column associated with that minus zero is

o also uncovered. By virtue of uncovering the first column, the third

§§ iteration then labels the (4,1) position plus zero and also Z . This
i% latter condition now satisfies the requirements for proceeding to

v m Step Four.

3&

5

» AFTER ITERATIONS 1 AND 2 AFTER ITERATION 3

4

A COVER COVER COVER COVER

1 0 3 0 0 0 1 0 3
4 8 0\ + ]A

- +\€ 1 cover 10 J241 16 4| 18] 70

e 0y 15| 13 o IoN| 21 *R 15 13

3 f\i Cover

R 71 0 13 1t 25| o 7 oq* 13

N 7] 1] 9 3 Jfofo] 12] 7] 1] 9

i

o

P FIGURE A-6. COST MATRIX FOLLOWING STEP THREE

& A-9




S

o

3 {:3§iy Step Four: Execute a New Additional Allocation and Any Necessary

| - ~Reallocation of Resources to Demands. Step Four begins with a plus-
; flagged zero designated Z° in a row with unexhausted resources. One
¥ of two conditions will now apply.

i

L If Z, lies in a column with no minus-flagged zeros, then a
? comparison is made between the reamining row resources and the unsatis-
§ fied column demands. The lesser of the two is assigned. After such
¥ allocation all plus and minus flags and all row and column coverings
. are removed. Processing returns to that part of Step Two where all

b demand satisfied columns are covered and the solution is then tested
i for completeness.

Alternatively, Zo lies in a column with a minus-flagged

; zero which is designated Zl' A search of the row containing Z1 is made
for a plus-flagged zero which is designated ZZ' The search process is
thus continued until a plus-flagged zero is identified which has no
minus-flagged zero in its column. HNext, a value for allocation is
determined. It is the minimum value of three sets considered. Set

One is the set of all allocations to cells containing minus-flagged
zeros in the above-identified chain. Set Two is the remaining resources
in the row containing Zo’ Set Three is the unsatisfied demand in the
column containing the last plus-flagged zero in the chain. The mini-
mum value of the three sets is chosen- for reallocation. Allocations
previously made through the minus-flagged zeros in the chain are
reduced'by this amount and each of the plus-flagged zeros in the chain
is increased by this amount. The Zo row resources and the column demand
of the last plus zero in the chain are also reduced by this amount. All
plus and minus flags and row and column coverings are removed and
processing returns to that part of Step Two which covers all demand
satisfied columns and tests the solution for completeness or further
processing (Step Three). The algorithm: Beginning with Zo search for
minus-flagged zeros in the column of a plus zero under consideration,

el b R4

.
W

AL

e g L

Nk gl A oty £ S

A-10




7 T -:‘ .."1_ 1
v.a'.‘f ;", - f

e
g

e

-
- -k

&

\.'.‘i"‘.

l.‘l,
P Mt
s

R

o
P

*;
¥,
&
AN 't

search for a plus~flagged zero in the row of the identified minus-

flagged zero. Continue until arriving at a plus-flagged zero with

no minus-flagged zero in its column. (This may occur when Zcfis the

only plus zero.) Identify as an allocation the minimum of the

allocations to all minus-flagged zero cells, the row resource at ZOL

or the column demand of the last plus-flagged zero in the chain.

{When Zo is the only plus zero the minimum of its corresponding row
resources or column demands is used.) Add this minimum value as the

allocation to all plus-flagged zeros in the chain; subtract it from

all minus-flagged zeros in the chain. Adjust remaining Zc row
resources and the unsatisfied last plus zero column demands accordingly.
If all demands are satisfied, solution is complete. Reinove all plus
and minus flags and coverings. [f demands are not satisfied, return

to that part of Step Two to cover all satisfied demand columns.

The chain established by completing Step Three consists of
the Zo in position (4,1), the minus zero in position (2,1) and the
plus zero in position{2, 3). Applying Step Four to the left Cost .
Matrix of Figure A-7, the minimum value among the Z° row resources,
the minus zero allocation(s) and the plus zero column demands in the
chain is the value of plus zero column demand (value = 1). By alloca-
ting this amount to the Z° cell and by reducing the minus zero(s) in
the chain, the Zo row resource and the last plus zero column demand

by the same amount, the results are as depicted in the right Cost

Matrix of Figure A-7. Note that the flags and covers are also removed
upon completion of Step Four prior to returning to Step Two.

A-11

ol _.'\'.;-_.'..._-‘..‘...:-_. e N T T A R,
S a s ta et _._L_-_._L..L‘\.'.i_ [ :\’L‘- ".ﬂ.v-n




........
.........................

52
N
h{L
ALK
WL

IN i BEFORE STEP FOUR AFTER STEP FOUR
.‘ A w -
;{S COVER COVER

w! D
$$ X} R 0 0 0 0 31

o ]

~ Cover 0 242 16 4 18 0

3 3
Z Cover 0 0 21 0 15 13
o 1ffas| oN] 7[ o\] 13
W 2 o 12f ] 1] o
e
i FIGURE A-7. COST MATRIX FOLLOWING THE STEP FOUR PROCEDURE |
\’ 3
ot
§ Returning to Step Two the appropriate portion of the algorithm
@ is repeated: (Cover all columns whose demands have been satisfied. The
:‘; Cost Matrix becomes that shown in Figure A-8 before proceeding to Step

\‘:'}

,f"-sf!l":,{.« vy
W'J. ﬁ‘g‘t‘;
b

COVER COVER COVER COVER
D 5T ol ol ol 3

o R

— 0 flea] 16 4| 18 0

2 o [| o\ 21} o\] 15| 13

b 1 [|2s] o 7 cf\% 13

g 2 [oN 12| w| 1] s

o

e FIGURE A-8. COST MATRIX FOLLOWING STEP TWO A SECOND TIME

B A-12




JaltAd s AR A Al Al S, Sl S M Sl it S e Sl e -t it Shf Joen e dine 4t 4

Proceeding to Step Three again and the algorithm: Choose an
uncovered zero. Flag it as plus. If it lies in a row with unexhausted
resources, label it Z° and proceed to Step Four. OQtherwise, cover the
row. If other zeros in this row lie in a covered column and are asso-
ciated with a cell that has an allocation, flag the 2ero minus and
uncover {ts associated column. Repeat the process until an uncovered
2ero, flagged plus, is found to have resources remaining. Then pro-
ceed to Step Four. Otherwise; when all zeros are covered go to Step
Five.

Since all zeros are covered in the Cost Matrix (Figure A-9),
Step Five is next.

COVER COVER COVER COVER
0] O 0 0 3
16 4] 18| "o

24

V4
oN\| 21 0 15 13
25

Nl 7 oV 13

D

Cover

Nt Ol O

0 12 17 1 9

FIGURE A-9. COST MATRIX BEFORE ENTERING STEP FIVE

Step Five: Modify the Cost Matrix to Produce New Uncovered Zeros:
A1l plus and minus flags and row and column coverings are retained.
Considering covered rows and columns, there are three sets of cells:
uncovered cells, single-covered cells, and twice-covered cells. The
minimum cost in the uncovered cells is identified. It is subtracted

A-13




TiANA

Y o o3l

g Y

'f" PO

ORI A
T T )

AR

-
[ 2
s
3

e
§
<)
Y

from costs in all uncovered cells creating at least one new zero cost

in an uncovered cell. It is added to costs in all twice-covered cells.
Costs in single~covered cells remain unchanged. Optimal allocations

on these adjusted costs will also be optimal for the original cost
matrix. Processing returns to Step Three. The algorithm: Identify
the least uncovered cost. Subtract this value from all uncovered costs.
Add this value to all twice-covered costs. Retain all plus and minus
flags and cover and return to Step Three.

The least uncovered cost in Figure A-9 is that found in
position (4,5) valued nine. Subtracting this from uncovered positions
(2,5), (3,5) and (4,5) and adding to to twice covered positions (1,1),
(1,2), (1,3) and (1,4) results in the cost matrix shown in Figure A-10.

. COVER COVER COVER COVER

N_of o of of 3]
cover | 0 33| 25| 13] 27| "o

o f o] 21| o\ 15|

1 25| o 7| oy s

2 § oy 12| 17| 1] o

FIGURE A-10. COST MATRIX FOLLOWING STEP FIVE

Again returning to Step Three and that part of the algorithm
which pertains: Choose an uncovered zero. Flag it as plus. If it
1ies in a row with unexhausted resources, label it Zo and proceed to

Step Four (Figure A-11).

A-14

......................

PRI TRy € B ¥ i Y W Wt W VW TV n e Vo™ . S U P S
i 5,“\"“.,’«1 “1." \ ,'}.‘ \ o ) 4 $\ s *!\'-"." b - RS W, <o e, LN .‘--._n ~ Wt 4

., & . -
--------




-va v, .
.....................

R
. '
X CoveEr | 0
" 0
¥ 1
3 2 [N 12| | 1] %o
& FIGURE A-11. COST MATRIX FOLLOWING STEP THREE
®

Following that part of the Step Four algorithm which pertains:

Beginning with Zo search for minus-flagged zeros in the column of a
plus zero under consideration, search for a plus-flagged zero in the
: row of the identified minus-flagged zero. Continue until arriving at

)9 a plus-flagged zero with no minus-flagged zero in its column. (This
A v may_occur when Z° is the only plus zero.) Identify as an allocation
(in this case) the minimum of either the Z, row resources or the Zo
colum demanc,. Add this minimum value as the allocation to all plus-
flagged zeros (Zo) in the chain; and adjust remaining Zo row resources
and the Z0 column demand; accordingly. If all demands are satisfied,
solution is complete. Remove all plus and minus flags and coverings.
I1f demands are not satisfied, return to that part of Step Two to cover
all satisfied demand columns. This results in Figure A-12.

AT Alxs

L

0] 0 1
| 13] 27| o\
I
¥ 0 5] 4
b 7| o\| 4
. 171 1l o
N

FIGURE A-12. COST MATRIX FOLLOWING STEP FOUR

A-15




8
::'f
Y e
S Ao
\ — 4 ) Again repeating the pertinent parts of Step Two's algorithm:
< Cover all columns whose demands have been satisfied. The Cost Matrix
::If before proceeding to Step Three is as shown in Figure A-13.
Sy
N COVER COVER COVER COVER
fa D !
:‘:nf 0 0
290
AN 13| 27
¥, 8\3» 15
3 71 o s
.",
N 7] 1] o
5
\j )
7 FIGURE A-13. COST MATRIX FOLLOWING STEP TWO
A"
o
,‘.;.. )@ Once more returning to Step Three and executing the algorithm:
3‘;{ Choose an uncovered zero. Flag it as plus. If it lies in a row with
"';I unexhausted resources, label it Z0 and proceed to Step Four. Otherwise,
cover the row. . If other zeros in this row lie in a covered column and
o are associated with a cell that has an allocation, flag the zero minus
2 and uncover its associated column. Repeat the process until an uncov-
»"_ ered zero, flagged plus, is found to have resources remaining, then
- proceed to Step Four. Otherwise, when all zeros are covered go to Step
x5 Five.
e
.:2
A After three iterations of Step Three the Cost Matrix results

in Figure A-14 with all zeros covered. This then requires proceeding
e to Step Five.




-

o

ot -t e
Y RA o 3R

|

NN

R o7 oS 2t SRRy
4,
A
‘_"

COVER COVER
cover | o 25
cover [ 0 |*o\] 21 °d\§[ 5] a
1] 251 o 7] oN| e
cover | 0 |ToN] 12] 17| 1 *Eia

FIGURE A-14. COST MATRIX-FOLLOWING STEP THREE

Repeating the Step Five Algorithm: Identify the least uncov-
ered cost. Subtract this value from all uncovered costs. Add this

value to all twice-covered costs. Retain all plus and minus flags and

cover and return to Step Three.

The least uncovered cost in Figure A-14 is that (value = 4)
found in position (3,5). Subtracting this value from positions (3,1),
(3,3) and (3,5) and adding it to twice covered positions (1,2), (1,4),
(2,2), (2,4), (4,2), and (4,4) results in the Cost Matrix shown in
Figure A-15. '

COVER COVER
N0 _o] of of of 1
cover | o | 33| 29| 13| 31| o\
cover [ 0 [[+0N] 25| 0| 19|
B 3

1 21] o\ 3f o
cover | 0 [[oN] 16| 17| 5| ‘0¥

FIGURE A-15. COST MATRIX FOLLOWING STEP FIVE

A-17




&

&

2

Ly

I"

b ]

AEERS

B W Returning to Step Three again to execute only the pertinent

. part of the algorithm: ' Choose an uncovered zero. Flag it as plus. If
< it lies in a row with unexhausted resources, label it Z, and proceed to
% Step Four. This results in the Cost Matrix depicted in Figure A-16.

N

2 . COVER COVER

; D

é R 0 0 0 0 1

( cover | o 33| 20| 13| 31| To\

¢ cover | o o\ 25 ‘&L 9|

v T 21| o 3| o ol

N cover| o ffoN] 16 17| s| Yo

o

-
@

FIGURE A-16 COST MATRIX FOLLOWING STEP THREE

As with a previous execution of Step Four only the pertinent
parts of the algorithm follow: Beginning with Zo search for minus-
flagged zeros in the columm of a plus zero under consideration, search
for a plus-flagged zero in the row of the identified minus-flagged
zero. Continue until arriving at a plus-flagged zero with no minus-
flagged zero in its column. (This may occur when Zo is_the only plus
zero.) Identify as an allocation the minimum of either the Z, row
resources or the Z° column demands. Add this minimum value as an
allocation to all plus-flagged zeros in the chain; and adjust remaining
Zo row_resources and the Z° column demands accordingly. If all
demands are satisfied, solution is complete. Remove all plus and minus
flags and coverings. If demands are not satisfied, return to that part
of Step Two to cover all satisfied demand columms. This results in
the complete solution (Payoff Matrix) shown in Figure A-17,

Fahs, s

VA tyrwietr

- P
-
7 o Wl Ll A e 13

P A,

?
L )
Sy

-,

N
)
]

B
[}

-~
 J




NPT
ANl

>

XK

\’ k] .-
£
SR
e

2o

o

o

LR i

NA N AP Y]

2 0] 0] o] o] o
o J33| 29| 13

0 JoN| 25| o

o fa1| o\ 3

o foN 16| v

FIGURE A-17. SOLUTION PAYOFF MATRIX FOLLOYING
THE LAST ITERATIOMN OF STEP FOUR

Now that the solution is compiete, the cost must be deter-
mined. By projecting the solution allocations onto the original Cost
Matrix the matrix.shown in Figure A-18 results.

29| 18] 18] 31] 2

21| 15\ 28] 33
1 o\ 22 | 13

s\| 12| 32 | 14 2

FIGURE A-18. THE FINAL COST AHD ALLOCATIOM MATRIX

By multiplying each cell cost by the corresponding alloca-
tion to that cell and summing, the ootimum (minimum) total cost is
determined as follows:

(1X20) + (2X5) + (3X15) +(3X0) + (3KI3) + (1X33) + (IX5) + (2x28) = 210

A-19

------------

. - - ] . ® K RO ) » - - - _. « N 3
W ALY LGV L G AR RO SR o,V NS RN




...........
...........

3
X -
¥
b
iiﬁiﬁ A.3 ALTERNATE OPTIMAL SOLUTIONS
v .
Y The basic Munkres Algorithm provides an optimal solution to
o the allocation problem and also provides a convenient means for deter-
) mining if other combinations of allocations exist which would also be

optimal. The modified cost matrix (called the payoff matrix) which
results from the solution of the basic problem provides this means.

If a resource allocation which has been made is applied to a
different demand, an equal amount of some previous allocation against
that demand must be reallocated, so that all demands are exactly met
and all resources are allocated. This process is repeated forming a
chain through the matrix. In order to keep the resource and demand in
balance, this reallocation "chain" must eventually reallocate an equal
amount of supply to the demand from which the original reallocation was
made. The reallocations made through this "chain" must be equal;
therefore, the largest possible reallocation which can be made will be
equal to the smallest of the original allocations.

L7
PR

A

s

oF TN

T

ég

RREAINE

The payoff matrix which resulted from the original solution
will always have zero values in cells where allocations have been made.
There may also be other zero values in the matrix which represent pos-
sible opportunities for reallocations. If a chain (complete loop) of
these zero values can be found, a reallocation made through that chain
will also be an optimal solution.

R
Ny N
_,Mﬂ

-
~

5

Sa

o
e i

The process is as follows: Pick an allocation. Since it is
desired to move some of this allocation (subtract), this cell is flagged
with a minus. Now examine the payoff matrix row of that allocation for
a payoff value of zero (P = 0). Because we intend to add allocations
to this cell it is flagged as a plus. In the column of this P = 0,
find another P = 0, this cell must have a previous allocation since we

-

S P
Rt

Ris

S LA

A-20

PRI L ~ \'\"\‘\"'\'-_'\'-"\’ AT S R GRS R P L UG P i N At S P Y
* ’ - X el el ) ".:.1-;._‘"2‘.:_. !.:. “.\ ﬂ.-'} \'} \‘_\I_\ } .'- .'.0$ ‘l" 1\ ‘.\.."‘-




+ b

35
F

........

----------
................................................

must subtract from it and negative allocations cannot exist, this

cell is flagged minus. Examine the row of this cell for another P = 0
and flag it plus. Continue this process until the chain returns to
the original allocation cell. Next examine all minus flagged cells to
find the smallest value of the allocations made to those cells. This

‘is the largest possible reallocation which can be made. (Any smaller

reallocation could also be made to provide an intermediate solution.)
This value is then subtracted from all previous allocations in the
minus flagged cells and added to the allocations in ail plus flagged
cells. This completes the reallocation and results in a different
but still optimal solution.

An examination of the final payoff matrix from the previous
example problem (Figure A-18) shows that no alternate solution is pos-
sible. Therefore, an example of an alternate solution is provided by
the cost matrix shown in Figure A-19.

FIGURE A-19. ORIGINAL COST MATRIX

Applying the five steps of Munkres' Algorithm to this cost
matrix the solution Payoff Matrix shown in Figure A-20 is derived.

9 ‘\a
9 0| 01 O TOTAL COST = 89
o\ 3\§[ 5| 7
oN| ol S\Ql 2

FIGURE A-20. THE PAYOFF MATRIX

N RN




E AN O A SRR AR S AR AL Sl i Sl A0 I S AU Bl

R R AL BN BAL L S LA A ai vt Ant AL et G il o ot Bt e
AOAPAEAAN A S KA S SAA ISR

¥
3

LT WA

"y g, N TAA
.'3
:

N Although a number of reallocation combinations can be derived
w>r from the example payoff matrix, the following development of a realloca-
tion chain presents a good representative sample for discussion pur-
poses. Beginning by selecting position (1,1) since it has an allocation,
it is flagged minus (Figure A-21).

‘_"

KAt et at, '
Laal

:

“N| o]l of o
P

4 oN| N 5| 7

é; ox] o\ o 2

FIGURE A-21

B, -

Examining the row cont%ining this minus zero cell we find
two 2ero cells without allocations. For example purposes, the one
Tocated at position (1,3) is selected and flagged as a plus zero

(Figure A-22).
*o a\QJ

oN| o] s | 7

,\
-
~

AL AN

P
[]
o
o

o’ 1 4

b5 0 0 d\‘ 2
§ -

) FIGURE A-22

;VB“

Y

B,

Now, searching the column of the plus zero, another zero with
. an allocation is found (position (3,3)). This is labeled with a minus
2 2 (Figure A-23).




..........
-----------------

*o &l
5
‘o& 2

FIGURE A-23

Next a search is made'of this minus zero row for another zero
cell. Assuming the one at position (3,2) is selected, it is flagged

plus (Figure A-24).
- o * QE;
o\l s| - 7
oN|*oN| o 2

FIGURE A-24

o] O

Again searching the column of the last plus flagged zero for
a zero cell with an allocation, one is located at position (2,2). This
cell is flagged minus (Figure A-25). .

FIGURE A-25

A-23

L

- DO ST L RN .

M et e e e At et e e, . .
L CR AP A "

AR I O L RPN




R ol

AR Sy

! e O

MTe ™

7t o ST A

Searching the row of this minus zero cell reveals another
zero cell at position (2,1). Labeling this zero cell plus and search-
ing its column, the chain is found to be complete as the initial minus
flagged zero cell lies in this column (Figure A-26).

*o\ ‘6\§h 5
0 *3\{k '3&1

FIGURE A-26. THE REALLOCATION CHAIN COMPLETED

oN| o | %o o\él
7 [
2

By examining the minus flagged cells in reallocation chain
just developed, the minimum allocation among them is four in position
(3,3). By subtracting this amount from the minus flagged cells (posi-
tions (1,1), (2,2) and (3,3)) in the chain and adding it to the plus
flagged cells (positions (1,3), (2,1) and (3,2)), the reallocation is
completed as shown in Figure A-27. Note cell (3,3) now has a zero allo-

cation, and other allocations are also changed but the solution cost
remains the same.

ox| o |o¥{oV\
oX| o%{ s | 7
d\iJ oX[ of 2 TOTAL COST = 89

FIGURE A-27., ALTERNATE SOLUTIOM

A-24




